Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(24): 11651-11662, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38847557

RESUMEN

A certain type of photoresist used for deep-UV lithography (DUVL) can also be used for other types of photolithography. Thus, to meet the requirements of two or more lithography technologies simultaneously, it is necessary to design a variety of corresponding functional groups in the molecules of materials and obtain the required properties. Herein, we designed four matrix resins based on acrylate for DUVL, employing alkyl sulfide, adamantane, methyladamantane, and hydroxyl as dangling groups and a microcrosslinking network by adding a small amount of crosslinker. These polymers were used in the thermal nanoimprint lithography (NIL) process, and distinct patterns with a resolution of 100 nm were observed. The acrylate copolymers designed for DUVL in this work can be used as thermal NIL resists and to obtain good patterns. It was found that ethylene dimethacrylate (EDMA) and adamantane endowed the matrix resins with good thermal stability and that PMMHM demonstrated the best patterning performance among the four resins. These polymers can be applied in the manufacturing of high-density integrated circuits, nano-transistors, optoelectronic devices and other components in the future.

2.
ACS Appl Mater Interfaces ; 15(29): 35631-35638, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37436846

RESUMEN

The integration and miniaturization of contemporary electronics have led to significant challenges in dealing with electromagnetic (EM) radiation and heat accumulation. Despite these issues, achieving high thermal conductivity (TC) and electromagnetic interference (EMI) shielding effectiveness (SE) in polymer composite films remains an exceptionally difficult task. In this work, we used a straightforward in situ reduction process and a vacuum-drying method to successfully prepare a flexible Ag NPs/chitosan (CS)/PVA nanocomposite with three-dimensional (3D) conductive and thermally conductive network architectures. The 3D silver pathways formed by attaching to the chitosan fibers endow the material with simultaneous exceptional TC and EMI capabilities. At a silver concentration of 25 vol %, the TC of Ag NPs/CS/PVA nanocomposites reaches 5.18 W·m-1·K-1, exhibiting an approximately 25 times increase compared to CS/PVA composites. The electromagnetic shielding performance of 78.5 dB significantly outperforms the specifications of standard commercial EMI shielding applications by a significant margin. Additionally, Ag NPs/CS/PVA nanocomposites have greatly benefited from microwave absorption (SEA), effectively impeding the transmission of EM waves and reducing the reflected secondary EM wave pollution. Meanwhile, the composite material still maintains good mechanical properties and bendability. This endeavor helped develop malleable and durable composites that possess superior EMI shielding capabilities and intriguing heat dissipation properties using innovative design and fabrication methods.

3.
J Mater Chem B ; 11(33): 7950-7960, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37491975

RESUMEN

Membrane fouling induces catastrophic loss of separation performance and seriously restricts the applications of reverse osmosis (RO) membranes. Inspired by the mussel structure, polydopamine (PDA) and cystamine molecules (CA) with excellent anti-fouling properties were used to prepare accessible, biocompatible, and redox-responsive coatings for RO membranes. The PDA/CA-coated RO membranes exhibit a superior water flux of 65 L m-2 h-1 with a favourable NaCl rejection exceeding 99%. The water permeability through the PDA/CA-coated membrane is much higher than that of most membranes with similar rejection rates. Due to the formed protective hydration layers by PDA/CA coatings, anti-fouling properties against proteins, polysaccharides and surfactants were evaluated separately, and ultralow fouling properties were demonstrated. Moreover, the disulfide linkages in CA molecules can cleave in a reducing environment, yielding the degradation of PDA/CA coatings, thereby removing the foulants deposited on the coatings. The degradation endows the coated membranes with satisfying longtime anti-fouling properties, where the flux recovery reaches up to 90%. The construction of redox-responsive smart coatings not only provided a promising route to alleviate membrane fouling but can also be upscaled for use in numerous practical applications like sensors, medical devices, and drug delivery.


Asunto(s)
Biomimética , Filtración , Ósmosis , Agua/química , Oxidación-Reducción
4.
ACS Appl Mater Interfaces ; 15(14): 18550-18558, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37010144

RESUMEN

Covalent organic frameworks (COFs), with ordered pores and well-defined topology, are ideal materials for nanofiltration (NF) membranes because of their capacity of transcending the permeance/selectivity trade-off predicament. However, most reported COF-based membranes are focused on separating molecules with different sizes, resulting in low selectivity to similar molecules with different charges. Here, the negatively charged COF layer was fabricated in situ on a microporous support for the separation of molecules with different sizes and charges. Ultrahigh water permeance (216.56 L m-2 h-1 bar-1) was obtained because of the ordered pores and excellent hydrophilicity, which exceeds that of most membranes with similar rejections. For the first time, we used multifarious dyes with different sizes and charges, for the investigation of the selectivity behavior caused by the Donnan effect and size exclusion. The obtained membranes represent superior rejections to negatively and neutrally charged dyes larger than 1.3 nm, while positively charged dyes with a size of 1.6 nm can pass through the membrane, resulting in the separation of negative/positive mixed dyes with similar molecular sizes. This strategy of combining the Donnan effect and size exclusion in nanoporous materials may evolve into a generic platform for sophisticated separation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...