Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 572
Filtrar
1.
Front Pharmacol ; 15: 1357381, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774207

RESUMEN

Introduction: Agarwood is a traditional aromatic southern medicine. It has a long history of being used in traditional Chinese aromatherapy to treat insomnia, anxiety and depression. Due to the scarcity of wild resources, people have planted trees successfully and begun to explore various agarwood-inducing techniques. This study comparative analysis of volatile metabolites in agarwood produced by various inducing techniques and its potential sleep-promoting, anti-anxiety and anti-depressant network pharmacological activities. Methods: A total of 23 batches of two types of agarwood were collected, one of which was produced by artificial techniques, including 6 batches of TongTi (TT) agarwood produced by "Agar-Wit" and 6 batches of HuoLao (HL) agarwood produced by "burning, chisel and drilling", while the other was collected from the wild, including 6 batches of BanTou (BT) agarwood with trunks broken due to natural or man-made factors and 5 batches of ChongLou (CL) agarwood with trunks damaged by moth worms. The study employed metabolomics combined with network analysis to compare the differences in volatile metabolites of agarwood produced by four commonly used inducing techniques, and explored their potential roles and possible action targets in promoting sleep, reducing anxiety, and alleviating depression. Results: A total of 147 volatile metabolites were detected in agarwood samples, mainly including small aromatic hydrocarbons, sesquiterpenes and 2-(2-phenylethyl) chromone and their pyrolysis products. The results showed composition of metabolites was minimally influenced by the agarwood induction method. However, their concentrations exhibited significant variations, with 17 metabolites showing major differences. The two most distinct metabolites were 6-methoxy-2-(2-phenylethyl) chromone and 6,7-dimethoxy-2-(2-phenylethyl) chromone. Among the volatile metabolites, 142 showed promising potential in treating insomnia, anxiety, and depression, implicating various biological and signaling pathways, predominantly ALB and TNF targets. The top three active metabolites identified were 2-(2-phenylethyl) chromone, 1,5-diphenylpent-1-en-3-one, and 6-methoxy-2-[2-(4'-methoxyphenyl) ethyl] chromone, with their relative content in the four types of agarwood being TT>HL>CL>BT. Conclusion: The differences in the content of 2-(2-phenylethyl) chromones suggest that they may be responsible for the varying therapeutic activities observed in different types of agarwood aromatherapy. This study offers theoretical support for the selection of agarwood in aromatherapy practices.

2.
Pediatr Pulmonol ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771197

RESUMEN

OBJECTIVE: Bronchopulmonary dysplasia (BPD) is the most common chronic morbidity in extremely preterm infants. Mesenchymal stem cells-derived exosomes (MSC-Exos) therapies have shown prospects in animal models of BPD. Our study aimed to evaluate the effect of adipose mesenchymal stem cells-derived exosomes (AMSC-Exos) on BPD and the role of the NF-κB signaling pathway in this process. METHODS: The AMSCs were extracted and AMSC-Exos were isolated by ultracentrifugation method. Newborn rats were exposed to hyperoxia (90% O2) continuously for 7 days to establish a BPD model. The rats were treated with AMSC-Exos by intratracheal administration on postnatal day 4 (P4). Pulmonary morphology, pulmonary vasculature, inflammatory factors, and NF-κB were assessed. Hyperoxia-induced primary type II alveolar epithelial cells (AECIIs) and AMSC-Exos treatment with or without a pan-NF-κB inhibitor (PDTC) were established to explore the potential mechanism. RESULTS: Hyperoxia-exposed rats showed alveolar simplification with decreased radial alveolar count and increased mean linear intercept, low CD31, and vascular endothelial growth factor expression, reduced microvessel density, increased the expression of TNF-α, IL-1ß, and IL-6 and decreased the expression of IL-10, and induced NF-κB phosphorylation. AMSC-Exos protected the neonatal lung from the hyperoxia-induced arrest of alveolar and vascular development, alleviated inflammation, and inhibited NF-κB phosphorylation. Hyperoxia decreased viability, increased apoptosis, enhanced inflammation, and induced NF-κB phosphorylation of AECIIs but improved by AMSC-Exos, PDTC, or AMSC-Exos+PDTC. The effect of AMSC-Exos+PDTC in AECIIs was the same as AMSC-Exos, but more notable than PDTC alone. CONCLUSION: AMSC-Exos attenuated the hyperoxia-induced lung injury in neonatal rats by inhibiting the NF-κB signaling pathway partly.

3.
Int J Clin Exp Pathol ; 17(3): 63-71, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577693

RESUMEN

OBJECTIVES: Differentiating gastric atypical hyperplasia (AH) from dysplasia, including low-grade dysplasia (LGD) and high-grade dysplasia (HGD), poses significant challenges in small biopsies and specimens with technical artifacts. This study aims to establish objective diagnostic criteria for these conditions through combined morphologic and immunohistochemical (IHC) analyses. METHODS: Between January 2018 and September 2020, a total of 123 gastric mucosa biopsy specimens were collected at Anyang Tumor Hospital. According to the WHO Classification of Digestive System Tumors (5th edition), specimens were categorized into three groups: AH (n=48), LGD (n=30), and HGD (n=45). Morphologic characteristics were assessed, and IHC staining for MUC5AC, MUC6, MUC2, CD10, P53, and Ki67 was performed, followed by statistical analysis. RESULTS: Histologically, AH was predominantly marked by a pronounced inflammatory background (60.42%), intestinal metaplasia (64.58%), indistinct boundaries (83.33%), and a distinct maturation gradient (97.72%). AH nuclei were typically circular (97.92%), with a high nucleus-to-cytoplasm ratio (64.58%), prominent nucleoli (47.92%), and preserved polarity (89.58%). In contrast, LGD and HGD typically exhibited well-defined boundaries with an absent maturation gradient. LGD nuclei were rod-shaped (96.67%), with a low nucleus-to-cytoplasm ratio (96.67%) and preserved polarity (100%), whereas HGD demonstrated a loss of cellular polarity (77.78%). IHC findings revealed a consistent maturation gradient in AH, with polarized MUC5AC and MUC6 expression, significantly reduced in LGD (86.67%), and absent in HGD. P53 expression in HGD showed a predominant 'mutation-type pattern' (66.67%), contrasting with 'wild-type pattern' expression in AH and LGD (100%, 93.33%). Ki67 expression patterns varied from a 'pit neck pattern' in AH (95.83%) to a 'polarity pattern' in LGD (76.67%) and a 'diffuse pattern' in HGD (57.78%). The expression patterns of MUC5AC, MUC6, CD10, P53, and Ki67 varied significantly across the three groups (P<0.001). CONCLUSIONS: The integration of histomorphological features and expression profiles of MUC5AC, MUC6, P53, and Ki67 is instrumental in diagnosing gastric atypical hyperplasia and dysplasia.

4.
Intern Med J ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563467

RESUMEN

BACKGROUND AND AIMS: Sleep-disordered breathing (SDB) and nocturnal hypoxemia were known to be present in patients with chronic thromboembolic pulmonary hypertension (CTEPH), but the difference between SDB and nocturnal hypoxemia in patients who have chronic thromboembolic pulmonary disease (CTEPD) with or without pulmonary hypertension (PH) at rest remains unknown. METHODS: Patients who had CTEPH (n = 80) or CTEPD without PH (n = 40) and who had undergone sleep studies from July 2020 to October 2022 at Shanghai Pulmonary Hospital were enrolled. Nocturnal mean SpO2 (Mean SpO2) <90% was defined as nocturnal hypoxemia, and the percentage of time with a saturation below 90% (T90%) exceeding 10% was used to evaluate the severity of nocturnal hypoxemia. Logistic and linear regression analyses were performed to investigate the difference and potential predictor of SDB or nocturnal hypoxemia between CTEPH and CTEPD without PH. RESULTS: SDB was similarly prevalent in CTEPH and CTEPD without PH (P = 0.104), both characterised by obstructive sleep apnoea (OSA). Twenty-two patients with CTEPH were diagnosed with nocturnal hypoxemia, whereas only three were diagnosed with CTEPD without PH (P = 0.021). T90% was positively associated with mean pulmonary arterial pressure (mPAP) and pulmonary vascular resistance in patients with CTEPH and CTEPD without PH (P < 0.001); T90% was also negatively related to cardiac output in these patients. Single-breath carbon monoxide diffusing capacity, sex and mPAP were all correlated with nocturnal hypoxemia in CTEPH and CTEPD without PH (all P < 0.05). CONCLUSION: Nocturnal hypoxemia was worse in CTEPD with PH; T90%, but not SDB, was independently correlated with the hemodynamics in CTEPD with or without PH.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38619954

RESUMEN

Temporal network embedding (TNE) has promoted the research of knowledge discovery and reasoning on networks. It aims to embed vertices of temporal networks into a low-dimensional vector space while preserving network structures and temporal properties. However, most existing methods have limitations in capturing dynamics over long distances, which makes it difficult to explore multihop topological associations among vertices. To tackle this challenge, we propose LongTNE, which learns the long-range dynamics of vertices to endow TNE with the ability to capture high-order proximity (HP) of networks. In LongTNE, we employ graph self-supervised learning (Graph SSL) to optimize the establishment probability of deep links in each network snapshot. We also present an accumulated forward update (AFU) module to fathom global temporal evolution among multiple network snapshots. The empirical results on six temporal networks demonstrate that, in addition to achieving state-of-the-art performance on network mining tasks, LongTNE can be handily extended to existing TNE methods.

6.
J Prosthodont Res ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38616127

RESUMEN

PURPOSE: This study aimed to investigate whether the presence of a mesial cantilever influences the biomechanical behavior and screw loosening in fixed partial dentures (FPDs) with a distally tilted implant in the atrophic posterior maxilla and where to best place the distal implant. METHODS: Two configurations of implant-supported four-unit FPDs were modelled using finite element analysis. Five interabutment distances were considered. The stress and strain distributions in the implants, abutments, and prosthetic screws were verified under occlusal loading. The development of the axial force on the abutments and screws was also examined. Two-sample t-tests were used to identify differences (P < 0.05). RESULTS: The von Mises stress distributions of the components in the two configurations were similar, as were the maximum plastic strains of the distal prosthetic screws, distal implants, and 30° abutments. The difference in the maximum plastic strains of the straight abutments was statistically significant. The preload of the 30° abutment screws was significantly reduced after the initial loading. In the absence of a mesial cantilever, the axial force on the straight abutments increased. However, when a mesial cantilever was used, the preload of the straight abutments was maintained, and the axial force on the prosthetic screws fluctuated less. The axial force fluctuation of the abutments gradually decreased as the interabutment distance increased. CONCLUSIONS: Mesial cantilever usage had minimal effect on stress or strain distribution in FPD implants, abutments, or prostheses. However, it helped resist screw loosening. The distal screw access hole was preferably positioned close to the prosthetic end.

7.
EJNMMI Res ; 14(1): 38, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607510

RESUMEN

BACKGROUND: The total-body positron emission tomography/computed tomography (PET/CT) system, with a long axial field of view, represents the state-of-the-art PET imaging technique. Recently, the total-body PET/CT system has been commercially available. The total-body PET/CT system enables high-resolution whole-body imaging, even under extreme conditions such as ultra-low dose, extremely fast imaging speed, delayed imaging more than 10 h after tracer injection, and total-body dynamic scan. The total-body PET/CT system provides a real-time picture of the tracers of all organs across the body, which not only helps to explain normal human physiological process, but also facilitates the comprehensive assessment of systemic diseases. In addition, the total-body PET/CT system may play critical roles in other medical fields, including cancer imaging, drug development and immunology. MAIN BODY: Therefore, it is of significance to summarize the existing studies of the total-body PET/CT systems and point out its future direction. This review collected research literatures from the PubMed database since the advent of commercially available total-body PET/CT systems to the present, and was divided into the following sections: Firstly, a brief introduction to the total-body PET/CT system was presented, followed by a summary of the literature on the performance evaluation of the total-body PET/CT. Then, the research and clinical applications of the total-body PET/CT were discussed. Fourthly, deep learning studies based on total-body PET imaging was reviewed. At last, the shortcomings of existing research and future directions for the total-body PET/CT were discussed. CONCLUSION: Due to its technical advantages, the total-body PET/CT system is bound to play a greater role in clinical practice in the future.

8.
J Endocr Soc ; 8(6): bvae063, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38623382

RESUMEN

Context: Iron is an essential element in the human body and plays a critical role in many physiological and cellular processes. However, the association between iron status and the risk of all-cause or cause-specific mortality has not been well-investigated. And it is unclear whether the association between iron metabolic biomarkers and the risk of mortality differs between people with and without diabetes mellitus (DM). Objective: This work aimed to investigate associations between iron metabolic biomarkers and all-cause and cause-specific mortality risk in the general population, and heterogeneities in the associations among population with and without DM.. Methods: A total of 29 166 adults from the National Health and Nutrition Examination Survey (NHANES) III and NHANES 1999 to 2010 were included, with linkage to the National Death Index to December 31, 2019. Cox proportional-hazard models and Fine-Gray subdistribution hazard models were used to estimate associations between iron metabolic biomarkers and outcomes. Results: During a median follow-up of 18.83 years, 9378 deaths were observed, including 3420 cardiovascular disease (CVD) deaths and 1969 cancer deaths. A significant linear association between serum ferritin (SF) and all-cause mortality was observed among the overall population and those without DM. J-shaped associations between transferrin saturation (TSAT) and all-cause and CVD mortality were observed among all populations. In the overall population, compared to the first quartile (Q1) group, the adjusted hazard ratio (HR) (95% CI) for all-cause mortality was 1.07 (1.00-1.15), 1.05 (0.98-1.12), 1.13 (1.05-1.21) in Q2, Q3, and Q4 groups for SF, while the HR was 0.94 (0.88-0.99), 0.92 (0.86-0.97), and 0.93 (0.88-0.99) for TSAT. In individuals without DM, the adjusted HR of the Q4 of SF were 1.19 (1.03-1.37) for CVD mortality and 1.25 (1.05-1.48) for cancer mortality. In individuals with DM, the adjusted HRs of the Q4 of TSAT were 0.76 (0.62-0.93) for CVD mortality and 1.47 (1.07-2.03) for cancer mortality. Conclusion: Iron metabolism abnormalities increase mortality risk in the general population. The associations of iron status with mortality were significantly different between individuals with and without DM, which indicated tailored strategies for iron homeostasis are needed.

9.
Curr Med Chem ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38549538

RESUMEN

The nicotinamide adenine dinucleotide phosphate (NADP+/NADPH) redox couple serves as a substrate or cofactor for many enzymes to maintain cellular redox homeostasis as well as to regulate biosynthetic metabolism. The deficiency or imbalance of NADP+/NADPH redox couple is strongly associated with cardiovascular-related pathologies. An imbalance in the NADP+/NADPH ratio can lead to either oxidative or reductive stress. Reductive stress complicates the cellular redox environment and provides new insights into the cellular redox state. Newly discovered biosynthetic enzymes and developed genetically encoded biosensors provide technical support for studying how cells maintain a compartmentalized NADP(H) pool. NADP(H) plays an important role in cardiovascular pathologies. However, whether NADP(H) is injurious or protective in these diseases is uncertain, as either deficiency or excess NADP(H) levels can lead to imbalances in cellular redox state and metabolic homeostasis, resulting in energy stress, redox stress, and ultimately disease state. Additional study of the replicative regulatory network of NADP(H) metabolism in different compartments, and the mechanisms by which NADP(H) regulates redox state and metabolism under normal and pathological conditions, will develop the targeted and novel therapies based on NADP(H) metabolism.

10.
Anal Chim Acta ; 1301: 342467, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38553124

RESUMEN

Photoelectrochemistry represents a promising technique for bioanalysis, though its application for the detection of Flap endonuclease 1 (FEN1) has not been tapped. Herein, this work reports the exploration of creating oxygen vacancies (Ov) in situ onto the surface of Bi2O2S nanosheets via the attachment of dopamine (DA), which underlies a new anodic PEC sensing strategy for FEN1 detection in label-free, immobilization-free and high-throughput modes. In connection to the target-mediated rolling circle amplification (RCA) reaction for modulating the release of the DA aptamer to capture DA, the detection system showed good performance toward FEN1 analysis with a linear detection range of 0.001-10 U/mL and a detection limit of 1.4 × 10-4 U/mL (S/N = 3). This work features the bioreaction engineered surface vacancy effect of Bi2O2S nanosheets as a PEC sensing strategy, which allows a simple, easy to perform, sensitive and selective method for the detection of FEN1. This sensing strategy might have wide applications in versatile bioasssays, considering the diversity of a variety of biological reactions may produce the DA aptamer.


Asunto(s)
Técnicas Biosensibles , Endonucleasas de ADN Solapado , Oxígeno , Técnicas Biosensibles/métodos , Límite de Detección , Técnicas Electroquímicas/métodos
11.
Molecules ; 29(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542839

RESUMEN

A practical metal-free and additive-free approach for the synthesis of 6/7/8-membered oxacyclic ketone-fused isoxazoles/isoxazolines tetracyclic or tricyclic structures is reported through Csp3-H bond radical nitrile oxidation and the intramolecular cycloaddition of alkenyl/alkynyl-substituted aryl methyl ketones. This convenient approach enables the simultaneous formation of isoxazole/isoxazoline and 6/7/8-membered oxacyclic ketones to form polycyclic architectures by using tert-butyl nitrite (TBN) as a non-metallic radical initiator and N-O fragment donor.

12.
J Am Heart Assoc ; 13(6): e031867, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38497483

RESUMEN

BACKGROUND: Circular RNAs can serve as regulators influencing the development of pulmonary hypertension (PH). However, their function in pulmonary vascular intimal injury remains undefined. Thus, we aimed to identify specifically expressed circular RNAs in pulmonary microvascular endothelial cells (PMECs) under hypoxia and PH. METHODS AND RESULTS: Deep RNA sequencing and quantitative real-time polymerase chain reaction revealed that circALMS1 (circular RNA Alstrom syndrome protein 1) was reduced in human PMECs under hypoxia (P<0.0001). Molecular biology and histopathology experiments were used to elucidate the roles of circALMS1 in regulating PMEC dysfunction among patients with PH. The circALMS1 expression was decreased in the plasma of patients with PH (P=0.0315). Patients with lower circALMS1 levels had higher risk of death (P=0.0006). Moreover, the circALMS1 overexpression of adeno-associated viruses improved right ventricular function and reduced pulmonary vascular remodeling in monocrotaline-PH and sugen/hypoxia-PH rats (P<0.05). Furthermore, circALMS1 overexpression promoted apoptosis and inhibited PMEC proliferation and migration under hypoxia by directly downregulating miR-17-3p (P<0.05). Dual luciferase assay confirmed the direct binding of circALMS1 to miR-17-3p and miR-17-3p binding to its target gene YT521-B homology domain-containing family protein 2 (YTHDF2) (P<0.05). The YTHDF2 levels were also downregulated in hypoxic PMECs (P<0.01). The small interfering RNA YTHDF2 reversed the effects of miR-17-3p inhibitors on PMEC proliferation, migration, and apoptosis. Finally, the results indicated that, although YTHDF2, as an N(6)-methyladenosine reader protein, contributes to the degradation of many circular RNAs, it could not regulate the circALMS1 levels in PMECs (P=0.9721). CONCLUSIONS: Our study sheds new light on circALMS1-regulated dysfunction of PMECs by the miR-17-3p/YTHDF2 pathway under hypoxia and provides insights into the underlying pathogenesis of PH.


Asunto(s)
Hipertensión Pulmonar , MicroARNs , Humanos , Ratas , Animales , Hipertensión Pulmonar/metabolismo , MicroARNs/metabolismo , Células Endoteliales/metabolismo , ARN Circular/genética , Arteria Pulmonar , Hipoxia/complicaciones , Proliferación Celular/fisiología
13.
Talanta ; 273: 125906, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38490023

RESUMEN

CRISPR/Cas12a system has attracted extensive concern in biosensing due to its high specificity and programmability. Nevertheless, existing Cas12a-based assays mainly focus on nucleic acid detection and have limitations in non-nucleic acid biomarker analysis. To broaden the application prospect of the CRISPR/Cas technology, a cascade Cas12a biosensing platform is reported by combining dual-functionalized gold nanoparticles (FGNPs)-assisted rolling circle amplification (RCA) and Cas12a trans-cleavage activity (GAR-Cas) for ultrasensitive protein and exosome analysis. FGNPs serve as a critical component in the transduction of protein or exosome recognition information into nucleic acid amplification events to produce Cas12a activators. In the GAR-Cas assay, by integrating the triple cascade amplification of FGNPs-assisted transduction, RCA, and Cas12a signal amplification, ultralow abundance of target molecules can arouse numerous concatemers to activate Cas12a trans-cleavage activity to release intense fluorescence, allowing the ultrasensitive detection of as low as 1 fg/mL (∼41 aM) cTnI and 5 exosomes per µL. Furthermore, the presented strategy can be applied to detect exosome levels from clinical samples, showing excellent performance in distinguishing cancer patients from healthy individuals. The GAR-Cas sensing platform exhibits great potential in clinical diagnosis and enlarges biosensing toolboxes based on CRISPR/Cas technology for non-nucleic acid target analysis.


Asunto(s)
Técnicas Biosensibles , Exosomas , Nanopartículas del Metal , Ácidos Nucleicos , Humanos , Sistemas CRISPR-Cas , Exosomas/genética , Oro
14.
J Sci Food Agric ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441435

RESUMEN

BACKGROUND: Salted hen egg yolks are less oily and less flavorful than salted duck egg yolks. However, hen eggs have a more adequate market supply and have a broader application prospect than duck eggs. In the present study, egg yolks, plasma, and granules were dehydrated by adding 1% NaCl to simulate traditional curing process of salted egg yolk. The changes in the pickling process of hen egg yolks (HEY) and duck egg yolks (DEY) plasma and granules were compared to reveal the gelation mechanism and the underlying causes of quality differences in salted HEY and DEY. Salted HEY can be compared with the changes in DEY during the pickling process to provide a theoretical basis for the quality improvement of salted HEY to salted DEY. RESULTS: The results showed that both plasma and granules were involved in gel formation, but exhibited different aggregation behaviors. Based on the intermolecular forces, the HEY proteins achieved aggregation mainly through hydrophobic interactions and DEY proteins mainly through covalent binding. According to spin-spin relaxation time, HEY gels immobilized a large amount of lipid and interacted strongly with lipids. DEY gels showed much free lipid and had weak interaction with lipid. The microstructure showed that HEY proteins were easily unfolded to form a homogeneous three-dimensional gel network structure after salting, whereas heterogeneous aggregates were formed to hinder the gel development in DEY. Changes in protein secondary structure content showed that pickling can promote the transformation of the α-helices to ß-sheets structure in HEY gels, whereas more α-helices structure was formed in DEY gels. CONCLUSION: The present study has demonstrated that different gelation behaviors of hen and duck egg yolk proteins (especially in plasma) through salting treatment led to the difference in the quality of salted HEY and DEY. © 2024 Society of Chemical Industry.

15.
Clin Exp Immunol ; 216(2): 132-145, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38386917

RESUMEN

Natural killer (NK) cells were reported to be involved in the pathogenesis of primary antiphospholipid syndrome (pAPS). Immunosuppressive receptor T-cell immunoreceptor with Ig and ITIM domains (TIGIT) and activating receptor cluster of differentiation 226 (CD226) are specifically expressed on NK cells with competitive functions. This study aims to investigate the expression diversities of CD226/TIGIT on NK subsets and their associations with NK subsets activation phenotypes and potential clinical significance, furthermore, to explore potential cause for CD226/TIGIT expression diversities in pAPS. We comparatively assessed the changes of CD56brightNK, CD56dimNK, and NK-like cells in 70 pAPS patients compared with control groups, including systemic lupus erythematosus, asymptomatic antiphospholipid antibodies carriers (asymp-aPLs carriers), and healthy controls and their expression diversities of CD226/TIGIT by flow cytometry. CD25, CD69, CD107α expression, and interferon gamma (IFN-γ) secretion levels of NK subsets were detected to determine the potential association of CD226/TIGIT expression with NK subsets phenotypes. CD226/TIGIT expression levels were compared among different subgroups divided by aPLs status. Moreover, in vitro cultures were conducted to explore the potential mechanisms of CD226/TIGIT expression imbalance. CD56brightNK and CD3+CD56+NK-like cells were significantly increased while CD56dimNK cells were obviously decreased in pAPS, and CD56brightNK and NK-like cells exhibited significantly higher CD226 but lower TIGIT expressions. CD226+CD56brightNK and TIGIT-CD56brightNK cells show higher CD69 expression and IFN-γ secretion capacity, and CD226+NK-like and TIGIT-NK-like cells showed higher expressions of CD25 and CD69 but lower apoptosis rate than CD226- and TIGIT+CD56brightNK/NK-like cells, respectively. The imbalanced CD226/TIGIT expressions were most significant in aPLs triple-positive group. Imbalanced expressions of CD226/TIGIT on CD56brightNK and NK-like cells were aggravated after interleukin-4 (IL-4) stimulation and recovered after tofacitinib blocking. Our data revealed significant imbalanced CD226/TIGIT expressions on NK subsets in pAPS, which closely associated with NK subsets phenotypes and more complicated autoantibody status. CD226/TIGIT imbalanced may be affected by IL-4/Janus Kinase (JAK) pathway activation.

16.
Genes Genet Syst ; 992024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38417894

RESUMEN

Homeostasis is essential for muscle repair and regeneration after skeletal muscle exercise. This study investigated the role of methyltransferase-like 21C (METTL21C) in skeletal muscle of mice after exercise and the potential mechanism. First, muscle samples were collected at 2, 4 and 6 weeks after exercise, and liver glycogen, muscle glycogen, blood lactic acid and triglyceride were assessed. Moreover, the expression levels of autophagy markers and METTL21C in skeletal muscle were analyzed. The results showed that the expression levels of METTL21C and MYH7 in the gastrocnemius muscle of mice in the exercise group were significantly higher after exercise than those in the control group, which suggested that long-term exercise promoted the formation of slow-twitch muscle fibers in mouse skeletal muscle. Likewise, the autophagy capacity was enhanced with the prolongation of exercise in muscles. The findings were confirmed in mouse C2C12 cells. We discovered that knockdown of Mettl21c reduced the expression of MYH7 and the autophagy level in mouse myoblasts. These findings indicate that METTL21C promotes skeletal muscle homeostasis after exercise by enhancing autophagy, and also contributes to myogenic differentiation and the formation of slow muscle fibers.


Asunto(s)
Autofagia , Metiltransferasas , Fibras Musculares de Contracción Lenta , Cadenas Pesadas de Miosina , Condicionamiento Físico Animal , Animales , Ratones , Metiltransferasas/metabolismo , Metiltransferasas/genética , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/genética , Fibras Musculares de Contracción Lenta/metabolismo , Masculino , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Línea Celular , Ratones Endogámicos C57BL , Desarrollo de Músculos
17.
Clin Nucl Med ; 49(5): 449-450, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377339

RESUMEN

ABSTRACT: A 67-year-old man underwent 18 F-FDG PET/CT for lung cancer staging. Interestingly, the PET scan revealed strip-shaped FDG uptake in the right inguinal contoured area, which was later confirmed as a right varicocele through ultrasound imaging.


Asunto(s)
Fluorodesoxiglucosa F18 , Varicocele , Masculino , Humanos , Anciano , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos , Varicocele/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Estadificación de Neoplasias
18.
Front Microbiol ; 15: 1349151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38333587

RESUMEN

Eight new 12,8-eudesmanolide sesquiterpenes, eutypellaolides A-H (1-8), and two new eudesmane-type sesquiterpenes, eutypellaolides I-J (9-10), along with four known 12,8-eudesmanolide compounds 11-14, were isolated from the culture extract of the polar fungus Eutypella sp. D-1 by one strain many compounds (OSMAC) approach. The structures of these compounds were determined through comprehensive spectroscopic data and experimental and calculated ECD analysis. Antibacterial, immunosuppressive, and PTP1B inhibition activities of these compounds were evaluated. Compounds 1 and 11 exhibited strong inhibitory activities against Bacillus subtilis and Staphylococcus aureus, with each showing an MIC value of 2 µg/mL. Compound 9 displayed weak immunosuppressive activity against ConA-induced T-cell proliferation with an inhibitory rate of 61.7% at a concentration of 19.8 µM. Compounds 5, 11, and 14 exhibited weak PTP1B inhibition activities with IC50 values of 44.8, 43.2, and 49.5 µM, respectively.

19.
Ultrasound J ; 16(1): 14, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38386209

RESUMEN

BACKGROUND: Given the limited success rate and considerable challenges associated with conventional ultrasonography (US) guidance for percutaneous nephrostomy (PCN) in non-hydronephrotic kidneys, this study proposed a solution with ultrasound contrast agent to enhance the success rate and mitigate the difficulties. MATERIALS AND METHODS: From January 2017 to August 2023, a total of thirteen patients diagnosed with non-hydronephrotic kidney were included in the study. Following routine ultrasonography examination, no significant dilatation of the renal collecting system was observed. US-guided percutaneous nephrostomy PCN was performed with the assistance of ultrasound contrast agent (UCA). The patients were subsequently monitored to assess the improvement of symptoms and postoperative recovery. RESULTS: The success rate was found to be 100% for all patients (13/13) and kidneys (20/20). The average volume of UCA solution used was 19 ± 6.7 mL (range, 11-35 mL), while the mean duration of the operation was 18.92 ± 8.96 min (range, 7-36 min). A majority of the patients (12/13) underwent a single puncture procedure. Throughout the follow-up period, no serious complications were observed, and surgery resulted in significant alleviation of symptoms in all patients. CONCLUSION: The use of UCA-assisted US guidance PCN has been shown to be effective in achieving urinary diversion and alleviating associated clinical symptoms in non-hydronephrotic kidneys. In comparison to traditional methods, this approach demonstrates a high success rate and safety profile, while also offering a simplified operative procedure. Consequently, it presents a novel method and concept for managing non-hydronephrotic kidneys afflicted by urine leakage.

20.
ACS Appl Mater Interfaces ; 16(7): 8518-8526, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38335724

RESUMEN

We have witnessed the fast progress of cathodic photoelectrochemistry over the past decades, though its signal transduction tactic still lacks diversity. Exploring new sensing strategies for cathodic photoelectrochemistry is extremely demanding yet hugely challenging. This article puts forward a unique idea to incorporate an enzymatic reaction-invoked surface polarization effect (SPE) on the surface of BiOIO3 to implement an innovative cathodic photoelectrochemical (PEC) bioanalysis. Specifically, the thioredoxin reductase (TrxR)-mediated reaction produced the polar glutathione (GSH), which spontaneously coordinated to the surface of BiOIO3 and induced SPE by forming a polarized electric field, resulting in improved electron (e-) and hole (h+) pair separation efficiency and an enhanced photocurrent output. Correlating this phenomenon with the detection of TrxR exhibited a high performance in terms of sensitivity and selectivity, achieving a linear range of 0.007-0.5 µM and a low detection limit of 2.0 nM (S/N = 3). This study brings refreshing inspiration for the cathodic PEC signal transduction tactic through enzyme-mediated in situ reaction to introduce SPE, which enriches the diversity of available signaling molecules. Moreover, this study unveils the potential of in situ generated SPE for extended and futuristic applications.


Asunto(s)
Técnicas Biosensibles , Reductasa de Tiorredoxina-Disulfuro , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Electrodos , Electrones , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...