Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Cell Mol Med ; 28(18): e70062, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39317954

RESUMEN

Oesophageal squamous cell carcinoma (ESCC) contributes to high mortality. Modulating ferroptosis may reverse resistance to radiotherapy. This article was to explore the ubiquitination modification of KLF5 and its effect on ferroptosis in ESCC. KLF5 was under-expressed by shRNA plasmids in the cells and ROS levels were analysed by flow cytometry, ferroptotic gene expression was detected by qRT-PCR, MDA and GSH levels were determined by ELISA, cell morphology was observed by transmission electron microscopy, and Fe ion levels were analysed by immunofluorescence. Cells were treated with Ferrostatin-1 and NAC and analysed for cell proliferation by colony formation assay, cell migration and invasion by Transwell assays, and apoptosis by flow cytometry. DNA damage in cells was also analysed using comet assay, EdU doping assay, γH2AX fluorescence, DNA-PKcs and PCR. NEDD4L and KLF5 binding was analysed by immunoprecipitation. Changes in ferroptosis, DNA damage and resistance were analysed in cells with both silencing NEDD4L and KLF5. Changes in tumour resistance to radiation were analysed in mice underexpressing NEDD4L and KLF5. Low expression of KLF5 significantly promotes cellular lipid peroxidation levels, with decreased expression of SOD and GPX4, and increased expression of ACSL4. Concurrently, MDA levels deplete GSH, and cells exhibit typical ferroptotic morphology with increased Fe2+ content. KLF5 inhibition results in enhanced cellular clonogenicity, migration and invasion activities, reduced apoptosis, increased tail DNA, nuclear EdU incorporation, nuclear γH2AX foci and elevated expression of DNA-PKcs, LIG4, RAD9B and BMI1. Ferrostatin-1 and NAC reverse these effects. NEDD4L ubiquitination modifies and degrades KLF5, with NEDD4L/KLF5 inhibition mitigating cellular ferroptosis and DNA damage, thereby promoting radiosensitivity both in vitro and in vivo. NEDD4L increases radiosensitivity by accelerating cellular ferroptosis via ubiquitination modification of KLF5.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Ferroptosis , Factores de Transcripción de Tipo Kruppel , Ubiquitina-Proteína Ligasas Nedd4 , Tolerancia a Radiación , Ubiquitinación , Ferroptosis/genética , Humanos , Animales , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/radioterapia , Ratones , Tolerancia a Radiación/genética , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Línea Celular Tumoral , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Daño del ADN , Movimiento Celular , Apoptosis , Ratones Desnudos , Estabilidad Proteica/efectos de la radiación
2.
Gene ; 931: 148877, 2024 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-39173977

RESUMEN

BACKGROUND: Abdominal aortic aneurysm (AAA) represents one of the most life-threatening cardiovascular diseases and is increasingly becoming a significant global public health concern. The aneurysms-osteoarthritis syndrome (AOS) has gained recognition, as patients with this syndrome often exhibit early-stage osteoarthritis (OA) and have a substantially increased risk of rupture, even with mild dilation of the aneurysm. The aim of this study was to discover potential biomarkers that can predict the occurrence of AAA rupture in patients with OA. METHODS: Two gene expression profile datasets (GSE98278, GSE51588) and two single-cell RNA-seq datasets (GSE164678, GSE152583) were obtained from the GEO database. Functional enrichment analysis, PPI network construction, and machine learning algorithms, including LASSO, Random Forest, and SVM-RFE, were utilized to identify hub genes. In addition, a nomogram and ROC curves were generated to predict the risk of rupture in patients with AAA. Moreover, we analyzed the immune cell infiltration in the AAA tissue microenvironment by CIBERSORT and validated key gene expression in different macrophage subtypes through single-cell analysis. RESULTS: A total of 105 intersecting DEGs that showed consistent changes between rAAA and OA dataset were identified. From these DEGs, four hub genes (PAK1, FCGR1B, LOX and PDPN) were selected by machine learning. High predictive performance was observed for the nomogram based on these hub genes, with an AUC of 0.975 (95 % CI: 0.942-1.000). Abnormal immune cell infiltration was detected in rAAA and correlated significantly with the hub genes. Ruptured AAA cases exhibited higher nomoscore values and lower M2 macrophage infiltration compared to stable AAA. Validation in animal models (PPE+BAPN-induced rAAA) confirmed the significant role of these biomarkers in AAA pathology. CONCLUSION: The present study successfully identified four potential hub genes (PAK1, FCGR1B, LOX and PDPN) and developed a robust predictive nomogram to assess the risk of AAA rupture. The findings also shed light on the connection between hub genes and immune cell components in the microenvironment of rAAA. These findings support future research on key genes in AAA patients with OA, providing insights for novel management strategies for AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal , Osteoartritis , Humanos , Aneurisma de la Aorta Abdominal/genética , Osteoartritis/genética , Rotura de la Aorta/genética , Masculino , Mapas de Interacción de Proteínas/genética , Aprendizaje Automático , Perfilación de la Expresión Génica/métodos , Biomarcadores , Transcriptoma , Curva ROC , Factores de Riesgo , Macrófagos/metabolismo , Proteína-Lisina 6-Oxidasa/genética , Bases de Datos Genéticas
3.
Cancer Cell Int ; 24(1): 247, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010054

RESUMEN

OBJECTIVE: To investigate the mechanism by which cancer-associated fibroblasts (CAFs) affect the growth and immune evasion of lung cancer cells. METHODS: Initially, datasets comparing CAFs with normal fibroblasts were downloaded from the GEO dataset GSE48397. Genes with the most significant differential expression were selected and validated using clinical data. Subsequently, CAFs were isolated, and the selected genes were knocked down in CAFs. Co-culture experiments were conducted with H1299 or A549 cells to analyze changes in lung cancer cell growth, migration, and immune evasion in vitro and in vivo. To further elucidate the upstream regulatory mechanism, relevant ChIP-seq data were downloaded from the GEO database, and the regulatory relationships were validated through ChIP-qPCR and luciferase reporter assays. RESULTS: OLR1 was significantly overexpressed in CAFs and strongly correlated with adverse prognosis in lung cancer patients. Knockdown of OLR1 markedly inhibited CAFs' support for the growth and immune evasion of lung cancer cells in vitro and in vivo. ChIP-seq results demonstrated that PRRX1 can promote OLR1 expression by recruiting H3K27ac and H3K4me3, thereby activating CAFs. Knockdown of PRRX1 significantly inhibited CAFs' function, while further overexpression of OLR1 restored CAFs' support for lung cancer cell growth, migration, and immune evasion. CONCLUSION: PRRX1 promotes OLR1 expression by recruiting H3K27ac and H3K4me3, activating CAFs, and thereby promoting the growth, migration, and immune evasion of lung cancer cells.

4.
Biotechnol Lett ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066958

RESUMEN

Klebsiella variicola is a Gram-negative bacterium that is frequently isolated from a wide variety of natural niches. It is a ubiquitous opportunistic pathogen that can cause diverse infections in plants, animals, and humans. It also has significant biotechnological potential. However, due to the lack of efficient genetic tools, the molecular basis contributing to the pathogenesis and beneficial activities of K. variicola remains poorly understood. In this study, we found and characterized a native type I-E CRISPR-Cas system in a recently isolated K. variicola strain KV-1. The system cannot cleave target DNA sequences due to the inactivation of the Cas3 nuclease by a transposable element but retains the activity of the crRNA-guided Cascade binding to the target DNA sequence. A targeting plasmid carrying a mini-CRISPR to encode a crRNA was designed and introduced into the KV-1 strain, which successfully repurposed the native type I-E CRISPR-Cas system to inhibit the expression of the target gene efficiently and specifically. Moreover, by creating a mini-CRISPR to encode multiple crRNAs, multiplex gene repression was achieved by providing a single targeting plasmid. This work provides the first native CRISPR-Cas-based tool for programmable multiplex gene repression in K. variicola, which will facilitate studying the pathogenic mechanism of K. variicola and enable metabolic engineering to produce valuable bioproducts.

5.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167323, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-38925483

RESUMEN

BACKGROUND: Peripheral artery disease (PAD) is an ischemic disease with a rising incidence worldwide. The lncRNA H19 (H19) is enriched in endothelial progenitor cells (EPCs), and transplantation of pyroptosis-resistant H19-overexpressed EPCs (oe-H19-EPCs) may promote vasculogenesis and blood flow recovery in PAD, especially with critical limb ischemia (CLI). METHODS: EPCs isolated from human peripheral blood was characterized using immunofluorescence and flow cytometry. Cell proliferation was determined with CCK8 and EdU assays. Cell migration was assessed by Transwell and wound healing assays. The angiogenic potential was evaluated using tube formation assay. The pyroptosis pathway-related protein in EPCs was detected by western blot. The binding sites of H19 and FADD on miR-107 were analyzed using Luciferase assays. In vivo, oe-H19-EPCs were transplanted into a mouse ischemic limb model, and blood flow was detected by laser Doppler imaging. The transcriptional landscape behind the therapeutic effects of oe-H19-EPCs on ischemic limbs were examined with whole transcriptome sequencing. RESULTS: Overexpression of H19 in EPCs led to an increase in proliferation, migration, and tube formation abilities. These effects were mediated through pyroptosis pathway, which is regulated by the H19/miR-107/FADD axis. Transplantation of oe-H19-EPCs in a mouse ischemic limb model promoted vasculogenesis and blood flow recovery. Whole transcriptome sequencing indicated significant activation of vasculogenesis pathway in the ischemic limbs following treatment with oe-H19-EPCs. CONCLUSIONS: Overexpression of H19 increases FADD level by competitively binding to miR-107, leading to enhanced proliferation, migration, vasculogenesis, and inhibition of pyroptosis in EPCs. These effects ultimately promote the recovery of blood flow in CLI.


Asunto(s)
Células Progenitoras Endoteliales , Proteína de Dominio de Muerte Asociada a Fas , Isquemia , MicroARNs , Piroptosis , ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Piroptosis/genética , Células Progenitoras Endoteliales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Isquemia/metabolismo , Isquemia/patología , Isquemia/genética , Humanos , Animales , Ratones , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Proteína de Dominio de Muerte Asociada a Fas/genética , Masculino , Extremidad Inferior/irrigación sanguínea , Extremidad Inferior/patología , Movimiento Celular/genética , Proliferación Celular , Neovascularización Fisiológica/genética , Ratones Endogámicos C57BL , Enfermedad Arterial Periférica/metabolismo , Enfermedad Arterial Periférica/patología , Enfermedad Arterial Periférica/genética , Modelos Animales de Enfermedad
6.
BMC Plant Biol ; 24(1): 522, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853241

RESUMEN

BACKGROUND: Several WRKY transcription factors (TFs), including CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40 are known to govern the resistance of pepper (Capsicum annuum L.) plants to Ralstonia solanacearum infestation (RSI) and other abiotic stresses. However, the molecular mechanisms underlying these processes remain elusive. METHODS: This study functionally described CaWRKY3 for its role in pepper immunity against RSI. The roles of phytohormones in mediating the expression levels of CaWRKY3 were investigated by subjecting pepper plants to 1 mM salicylic acid (SA), 100 µM methyl jasmonate (MeJA), and 100 µM ethylene (ETH) at 4-leaf stage. A virus-induced gene silencing (VIGS) approach based on the Tobacco Rattle Virus (TRV) was used to silence CaWRKY3 in pepper, and transiently over-expressed to infer its role against RSI. RESULTS: Phytohormones and RSI increased CaWRKY3 transcription. The transcriptions of defense-associated marker genes, including CaNPR1, CaPR1, CaDEF1, and CaHIR1 were decreased in VIGS experiment, which made pepper less resistant to RSI. Significant hypersensitive (HR)-like cell death, H2O2 buildup, and transcriptional up-regulation of immunological marker genes were noticed in pepper when CaWRKY3 was transiently overexpressed. Transcriptional activity of CaWRKY3 was increased with overexpression of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40, and vice versa. In contrast, Pseudomonas syringae pv tomato DC3000 (Pst DC3000) was easily repelled by the innate immune system of transgenic Arabidopsis thaliana that overexpressed CaWRKY3. The transcriptions of defense-related marker genes like AtPR1, AtPR2, and AtNPR1 were increased in CaWRKY3-overexpressing transgenic A. thaliana plants. CONCLUSION: It is concluded that CaWRKY3 favorably regulates phytohormone-mediated synergistic signaling, which controls cell death in plant and immunity of pepper plant against bacterial infections.


Asunto(s)
Capsicum , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Reguladores del Crecimiento de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Ralstonia solanacearum , Factores de Transcripción , Ralstonia solanacearum/fisiología , Capsicum/genética , Capsicum/inmunología , Capsicum/microbiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Ciclopentanos/metabolismo , Resistencia a la Enfermedad/genética , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Etilenos/metabolismo , Silenciador del Gen , Acetatos/farmacología
7.
Heliyon ; 10(6): e27727, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38515708

RESUMEN

Objective: To investigate the regulatory mechanism of EP300 in the interaction between SLC16A1-AS1 and TCF3 to activate the Wnt pathway, thereby promoting malignant progression in lung cancer. Methods: In lung cancer cell lines, SLC16A1-AS1 was knocked down, and the impact of this knockdown on the malignant progression of lung cancer cells was assessed through clonogenic assays, Transwell assays, and apoptosis experiments. The regulatory relationship between EP300 and SLC16A1-AS1 was investigated through bioinformatic analysis and ChIP experiments. The expression of SLC16A1-AS1 and TCF3 in 56 paired lung cancer tissues was examined using RT-qPCR, and their correlation was analyzed. The interaction between TCF3 and SLC16A1-AS1 was explored through bioinformatic analysis and CoIP experiments. Activation of the Wnt/ß-catenin pathway was assessed by detecting the accumulation of ß-catenin in the nucleus through Western blotting. The role of EP300 in regulating the effect of SLC16A1-AS1/TCF3-mediated Wnt/ß-catenin signaling on lung cancer malignant progression was validated through in vitro and in vivo experiments. Results: SLC16A1-AS1 is highly expressed in lung cancer and regulates its malignant progression. EP300 mediates histone modifications on the SLC16A1-AS1 promoter, thus controlling its expression. SLC16A1-AS1 exhibits specific interactions with TCF3, and the SLC16A1-AS1/TCF3 complex activates the Wnt/ß-catenin pathway. EP300 plays a critical role in regulating the impact of SLC16A1-AS1/TCF3-mediated Wnt/ß-catenin signaling on lung cancer malignant progression. Conclusion: EP300 regulates the SLC16A1-AS1/TCF3-mediated Wnt/ß-catenin signaling pathway, influencing the malignant progression of lung cancer.

8.
Front Microbiol ; 14: 1281381, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37840725

RESUMEN

Bacterial wilt disease caused by Ralstonia solanacearum is a widespread, severe plant disease. Tomato (Solanum lycopersicum), one of the most important vegetable crops worldwide, is particularly susceptible to this disease. Biological control offers numerous advantages, making it a highly favorable approach for managing bacterial wilt. In this study, the results demonstrate that treatment with the biological control strain Bacillus subtilis R31 significantly reduced the incidence of tomato bacterial wilt. In addition, R31 directly inhibits the growth of R. solanacearum, and lipopeptides play an important role in this effect. The results also show that R31 can stably colonize the rhizosphere soil and root tissues of tomato plants for a long time, reduce the R. solanacearum population in the rhizosphere soil, and alter the microbial community that interacts with R. solanacearum. This study provides an important theoretical basis for elucidating the mechanism of B. subtilis as a biological control agent against bacterial wilt and lays the foundation for the optimization and promotion of other agents such as R31.

9.
Plant Dis ; 107(8): 2325-2334, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37596715

RESUMEN

Banana (Musa spp.) is an important fruit and food crop worldwide. In recent years, banana sheath rot has become a major problem in banana cultivation, causing plant death and substantial economic losses. Nevertheless, the pathogen profile of this disease has not been fully characterized. Klebsiella variicola is a versatile bacterium capable of colonizing different hosts, such as plants, humans, insects, and animals, and is recognized as an emerging pathogen in various hosts. In this study, we obtained 12 bacterial isolates from 12 different banana samples showing banana sheath rot in Guangdong and Guangxi Provinces, China. Phylogenetic analysis based on 16S rRNA sequences confirmed that all 12 isolates were K. variicola strains. We sequenced the genomes of these strains, performed comparative genomic analysis with other sequenced K. variicola strains, and found a lack of consistency in accessory gene content among these K. variicola strains. However, prediction based on the pan-genome of K. variicola revealed 22 unique virulence factors carried by the 12 pathogenic K. variicola isolates. Microbiome and microbial interaction network analysis of endophytes between the healthy tissues of diseased plants and healthy plants of two cultivars showed that Methanobacterium negatively interacts with Klebsiella in banana plants and that Herbaspirillum might indirectly inhibit Methanobacterium to promote Klebsiella growth. These results suggest that banana sheath rot is caused by the imbalance of plant endophytes and opportunistic pathogenic bacteria, providing an important basis for research and control of this disease.[Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Musa , Animales , Humanos , Filogenia , ARN Ribosómico 16S/genética , China , Klebsiella/genética , Endófitos
10.
iScience ; 26(6): 106819, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37250797

RESUMEN

Lauryl alcohol, a natural compound found in plants and other organisms, is widely used to make surfactants, food, and pharmaceuticals. GZM, a plant protection preparation with lauryl alcohol as its major component is thought to establish a physical barrier on the plant surface, but its physiological functions are unknown. Here, we show that GZM improves the performance of peanut (Arachis hypogaea) plants in both the laboratory and the field. We demonstrate that the treatment with GZM or lauryl alcohol raises the contents of several specific lysophospholipids and induces the biosynthesis of phenylpropanoids, flavonoids, and wax in various plant species. In the field, GZM improves crop immunity, yield, and quality. In addition, GZM and lauryl alcohol can inhibit the growth of some pathogenic fungi. Our findings provide insights into the physiological and biological effects of GZM treatment on plants and show that GZM and lauryl alcohol are promising preparations in agricultural production.

11.
Bioprocess Biosyst Eng ; 46(7): 957-967, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37171579

RESUMEN

This study sought to characterize the differences between the 3D-printed and decellularized tracheal grafts, providing the basis for the synthesis of the more reasonable and effective tissue-engineered trachea. We compared the biomechanical properties and biocompatibility of the 3D-printed tracheal graft and decellularized tracheal graft in vitro and evaluated the biocompatibility, immune rejection and inflammation of the two materials through in vivo implantation experiments. Compared with the decellularized tracheal graft, the 3D-printed tracheal graft was associated with obviously higher biomechanical properties. The results demonstrated enhanced growth of BMSCs in the decellularized tracheal graft compared to the 3D-printed one when co-culture with two tracheal graft groups. Moreover, the CCK-8 assay demonstrated significant cell proliferation on the decellularized tracheal graft. Serum IgG and IgM measured in vivo by implantation testing indicated that the 3D-Printed tracheal graft exhibited the most significant inflammatory response. HE staining indicated that the inflammatory response in the 3D-printed tracheal graft consisted mainly of eosinophils, while little inflammatory cell infiltrates were observed in the decellularized tracheal graft. CD68 immunohistochemical analysis indicated that the infiltration of macrophages was not significant in both tracheal grafts. Our findings suggest that the biomechanical properties of the 3D-printed tracheal grafts are better than the decellularized tracheal grafts. Nonetheless, the decellularized tracheal graft exhibited better biocompatibility than the 3D-printed tracheal graft.


Asunto(s)
Andamios del Tejido , Tráquea , Andamios del Tejido/química , Tráquea/química , Tráquea/trasplante , Ingeniería de Tejidos/métodos , Técnicas de Cocultivo , Impresión Tridimensional
12.
Pestic Biochem Physiol ; 192: 105419, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37105625

RESUMEN

Glyphosate is an herbicide commonly used in agriculture, and its widespread use has adversely affected the survival of nontarget organisms. Among these organisms, bees in particular are important pollinators, and declining bee populations have severely affected crop yields around the world. However, the molecular mechanism by which glyphosate harms bees remains unclear. In our experiment, we screened and cloned a glyphosate-induced gene in Apis cerana cerana (A. c. cerana) and named glyphosate response factor 1 (AccGRF1). Sequence analysis showed that AccGRF1 contains a winged-helix DNA binding domain, which suggests that it belongs to the Forkhead box (Fox) protein family. qRT-PCR and heterologous expression in Escherichia coli and yeast showed that AccGRF1 can respond to glyphosate and oxidative stress. After AccGRF1 knockdown by means of RNA interference (RNAi), the resistance of A. c. cerana to glyphosate stress improved. The results suggested that AccGRF1 is involved in A. c. cerana glyphosate stress tolerance. This study reveals the functions of Fox transcription factors in response to glyphosate stress and provides molecular insights into the regulation of glyphosate responses in honeybees.


Asunto(s)
Glicina , Estrés Oxidativo , Abejas/genética , Animales , Estrés Oxidativo/genética , Interferencia de ARN , Glicina/toxicidad , Proteínas de Insectos/metabolismo , Glifosato
13.
J Sci Food Agric ; 103(11): 5401-5411, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37029991

RESUMEN

BACKGROUND: The widespread use of glyphosate has many adverse effects on Apis cerana cerana. Due to the incomplete understanding of the molecular mechanisms of glyphosate toxicity, there are no available methods for mitigating the threat of glyphosate to Apis cerana cerana. Small heat shock proteins (sHSPs) play an important role in resisting oxidative stress, but their mechanism of action in Apis cerana cerana remains unclear. RESULTS: In this experiment, we cloned and identified AccsHSP21.7. Studies have shown that AccsHSP21.7 contains binding motifs for various transcription factors related to oxidative stress. Abiotic stresses induced the expression of AccsHSP21.7. Bacteriostatic testing of a recombinant AccsHSP21.7 protein proved that Escherichia coli overexpressing AccsHSP21.7 showed increased resistance to oxidative stress. Knocking down the AccsHSP21.7 gene caused significant damage to midgut cells, which seriously disrupted the antioxidant system in Apis cerana cerana and greatly increased mortality under glyphosate stress. CONCLUSION: This study investigated the relationship between antioxidant regulation and the AccsHSP21.7 gene at the molecular level, and the results have guiding significance for the improvement of stress resistance in Apis cerana cerana. © 2023 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Abejas/genética , Animales , Antioxidantes/metabolismo , Estrés Fisiológico , Proteínas Recombinantes/genética , Factores de Transcripción/metabolismo , Proteínas de Insectos/química
14.
PeerJ ; 11: e14967, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36883062

RESUMEN

During colonization of soil and plants, biocontrol bacteria can effectively regulate the physiological metabolism of plants and induce disease resistance. To illustrate the influence of Bacillus subtilis R31 on the quality, transcriptome and metabolome of sweet corn, field studies were conducted at a corn experimental base in Zhuhai City. The results show that, after application of B. subtilis R31, sweet corn was more fruitful, with a 18.3 cm ear length, 5.0 cm ear diameter, 0.4 bald head, 403.9 g fresh weight of single bud, 272.0 g net weight of single ear, and 16.5 kernels sweetness. Combined transcriptomic and metabolomic analyses indicate that differentially expressed genes related to plant-pathogen interactions, MAPK signaling pathway-plant, phenylpropanoid biosynthesis, and flavonoid biosynthesis were significantly enriched. Moreover, the 110 upregulated DAMs were mainly involved in the flavonoid biosynthesis and flavone and flavonol biosynthesis pathways. Our study provides a foundation for investigating the molecular mechanisms by which biocontrol bacteria enhance crop nutrition and taste through biological means or genetic engineering at the molecular level.


Asunto(s)
Bacillus subtilis , Transcriptoma , Bacillus subtilis/genética , Endófitos/genética , Zea mays/genética , Metaboloma , Verduras
15.
Pestic Biochem Physiol ; 191: 105372, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36963941

RESUMEN

Tyrosine aminotransferase (TATN) is the first enzyme involved in the metabolic degradation of tyrosine, and it plays an important role in tyrosine detoxification and helps the body resist oxidative damage. However, the function of TATN in Apis cerana cerana (A. c. cerana) remains unclear. To explore the role of TATN in the response to pesticide and heavy metal stress in A. c. cerana, AccTATN was isolated and identified. AccTATN was highly expressed in the integument and the adult stage. Exposure to multiple pesticides and heavy metal stress upregulated AccTATN expression. RNA interference experiments showed that silencing AccTATN reduced the resistance of A. c. cerana to glyphosate and avermectins stress. The expression of antioxidant-related genes and the activity of antioxidant enzymes were reduced after AccTATN was silenced, leading to the accumulation of oxidative damage. Overexpression of the recombinant AccTATN protein in a prokaryotic system also confirmed its role in heavy metal stress and improved antioxidant capacity. Our study showed that AccTATN may promote resistance to pesticide and heavy metal stress by regulating the antioxidant capacity of A. c. cerana. This study provides a valuable theoretical basis for A. c. cerana conservation.


Asunto(s)
Antioxidantes , Plaguicidas , Abejas/genética , Animales , Antioxidantes/metabolismo , Tirosina Transaminasa/genética , Tirosina Transaminasa/metabolismo , Plaguicidas/toxicidad , Estrés Oxidativo/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estrés Fisiológico/genética , Proteínas de Insectos/metabolismo
16.
Genes Genomics ; 45(1): 123-134, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35670995

RESUMEN

BACKGROUND: Ralstonia solanacearum causes bacterial wilt of Pogostemon cablin which is an important aromatic herb and also the main materials of COVID-19 therapeutic traditional drugs. However, we are lacking the information on the genomic sequences of R. solanacearum isolated from P. cablin. OBJECTIVE: The acquisition and analysis of this whole-genome sequence of the P. cablin bacterial wilt pathogen. METHODS: An R. solanacearum strain, named SY1, was isolated from infected P. cablin plants, and the complete genome sequence was sequenced and analyzed. RESULTS: The SY1 strain contains a 3.70-Mb chromosome and a 2.18-Mb megaplasmid, with GC contents of 67.57% and 67.41%, respectively. A total of 3308 predicted genes were located on the chromosome and 1657 genes were located in the megaplasmid. SY1 strain has 273 unique genes compared with five representative R. solanacearum strains, and these genes were enriched in the plant-pathogen interaction pathway. SY1 possessed a higher syntenic relationship with phylotype I strains, and the arsenal of type III effectors predicted in SY1 were also more closely related to those of phylotype I strains. SY1 contained 14 and 5 genomic islands in its chromosome and megaplasmid, respectively, and two prophage sequences in its chromosome. In addition, 215 and 130 genes were annotated as carbohydrate-active enzymes and antibiotic resistance genes, respectively. CONCLUSION: This is the first genome-scale assembly and annotation for R. solanacearum which isolated from infected P. cablin plants. The arsenal of virulence and antibiotic resistance may as the determinants in SY1 for infection of P. cablin plants.


Asunto(s)
COVID-19 , Pogostemon , Ralstonia solanacearum , Ralstonia solanacearum/genética , Pogostemon/genética , Pogostemon/microbiología , COVID-19/genética , Virulencia/genética , Genes Bacterianos
17.
Front Immunol ; 13: 1007326, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36189254

RESUMEN

Background: Preclinical trials of immunotherapy in ovarian cancer (OC) have shown promising results. This makes it meaningful to prospectively examine the biological mechanisms explaining the differences in response performances to immunotherapy among OC patients. Methods: Open-accessed data was obtained from the Cancer Genome Atlas and Gene Expression Omnibus database. All the analysis was conducted using the R software. Results: We firstly performed the TIDE analysis to evaluate the immunotherapy response rate of OC patients. The machine learning algorithm LASSO logistic regression and SVM-RFE were used to identify the characteristic genes. The genes DPT, RUNX1T1, PTPRN, LSAMP, FDCSP and COL6A6 were selected for molecular typing. Our result showed that the patients in Cluster1 might have a better prognosis and might be more sensitive to immunotherapy, including PD-1 and CTLA4 therapy options. Pathway enrichment analysis showed that in Cluster2, the pathway of EMT, TNFα/NF-kB signaling, IL2/STAT5 signaling, inflammatory response, KRAS signaling, apical junction, complement, interferon-gamma response and allograft rejection were significantly activated. Also, genomic instability analysis was performed to identify the underlying genomic difference between the different Cluster patients. Single-cell analysis showed that the DPT, COL6A6, LSAMP and RUNX1T1 were mainly expressed in the fibroblasts. We then quantified the CAFs infiltration in the OC samples. The result showed that patients with low CAFs infiltration might have a lower TIDE score and a higher proportion of immunotherapy responders. Also, we found all the characteristic genes DPT, RUNX1T1, PTPRN, LSAMP, FDCSP and COL6A6 were upregulated in the patients with high CAFs infiltration. Immune infiltration analysis showed that the patients in Cluster2 might have a higher infiltration of naive B cells, activated NK cells and resting Dendritic cells. Conclusions: In summary, our study provides new insights into ovarian cancer immunotherapy. Meanwhile, specific targets DPT, RUNX1T1, PTPRN, LSAMP, FDCSP, COL6A6 and CAFs were identified for OC immunotherapy.


Asunto(s)
Neoplasias Ováricas , Factor de Transcripción STAT5 , Antígeno CTLA-4 , Carcinoma Epitelial de Ovario , Femenino , Humanos , Inmunoterapia , Interferón gamma/uso terapéutico , Interleucina-2/uso terapéutico , FN-kappa B , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/terapia , Receptor de Muerte Celular Programada 1 , Proteínas Proto-Oncogénicas p21(ras) , Factor de Necrosis Tumoral alfa/uso terapéutico
18.
Front Chem ; 10: 941352, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903192

RESUMEN

Developing immobilized-ionic liquids (ILs) sorbents is important for CO2 separation, and prior theoretically screening ILs is desirable considering the huge number of ILs. In this study, the compressibility of ILs was proposed as a new and additional index for screening ILs, and the developed predictive theoretical model, i.e., electrolyte perturbed-chain statistical associating fluid theory, was used to predict the properties for a wide variety of ILs in a wide temperature and pressure range to provide systematic data. In screening, firstly, the isothermal compressibilities of 272 ILs were predicted at pressures ranging from 1 to 6,000 bar and temperatures ranging from 298.15 to 323.15 K, and then 30 ILs were initially screened. Subsequently, the CO2 absorption capacities in these 30 ILs at temperatures from 298.15 to 323.15 K and pressures up to 50 bar were predicted, and 7 ILs were identified. In addition, the CO2 desorption enthalpies in these 7 ILs were estimated for further consideration. The performance of one of the screened ILs was verified with the data determined experimentally, evidencing that the screen is reasonable, and the consideration of IL-compressibility is essential when screening ILs for the immobilized-IL sorbents.

19.
Biotechnol Lett ; 44(5-6): 777-786, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35416565

RESUMEN

Legionella pneumophila is the major causative agent of Legionnaires' disease and Pontiac fever, which pose major public health problems. Rapid detection of L. pneumophila is important for global control of these diseases. Aptamers, short oligonucleotides that bind to targets with high affinity and specificity, have great potential for use in pathogenic bacterium detection, diagnostics, and therapy. Here, we used a whole-cell SELEX (systematic evolution of ligands by exponential enrichment) method to isolate and characterize single-stranded DNA (ssDNA) aptamers against L. pneumophila. A total of 60 ssDNA sequences were identified after 17 rounds of selection. Other bacterial species (Escherichia coli, Bacillus subtilis, Pseudomonas syringae, Staphylococcus aureus, Legionella quateirensis, and Legionella adelaidensis) were used for counterselection to enhance the specificity of ssDNA aptamers against L. pneumophila. Four ssDNA aptamers showed strong affinity and high selectivity for L. pneumophila, with Kd values in the nanomolar range. Bioinformatic analysis of the most specific aptamers revealed predicted conserved secondary structures that might bind to L. pneumophila cell walls. In addition, the binding of these four fluorescently labeled aptamers to the surface of L. pneumophila was observed directly by fluorescence microscopy. These aptamers identified in this study could be used in the future to develop medical diagnostic tools and public environmental detection assays for L. pneumophila.


Asunto(s)
Aptámeros de Nucleótidos , Legionella pneumophila , Aptámeros de Nucleótidos/química , ADN de Cadena Simple/genética , Escherichia coli/genética , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Técnica SELEX de Producción de Aptámeros
20.
BMC Microbiol ; 22(1): 44, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35120460

RESUMEN

BACKGROUND: Pseudomonas savastanoi is an important plant pathogen that infects and causes symptoms in a variety of economically important crops, causing considerable loss of yield and quality. Because there has been no research reported to date on bacterial canker of kiwifruit (Actinidia chinensis) plants caused by P. savastanoi and, in particular, no in-depth studies of the complete genome sequence or pathogenic mechanism, long-lasting and environmentally friendly control measures against this pathogen in kiwifruit are lacking. This study therefore has both theoretical value and practical significance. RESULTS: We report the complete genome sequence of P. savastanoi strain MHT1, which was first reported as the pathogen causing bacterial canker in kiwifruit plants. The genome consists of a 6.00-Mb chromosome with 58.5% GC content and 5008 predicted genes. Comparative genome analysis of four sequenced genomes of representative P. savastanoi strains revealed that 230 genes are unique to the MHT1 strain and that these genes are enriched in antibiotic metabolic processes and metabolic pathways, which may be associated with the drug resistance and host range observed in this strain. MHT1 showed high syntenic relationships with different P. savastanoi strains. Furthermore, MHT1 has eight conserved effectors that are highly homologous to effectors from P. syringae, Pseudomonas amygdali, and Ralstonia solanacearum strains. The MHT1 genome contains six genomic islands and two prophage sequences. In addition, 380 genes were annotated as antibiotic resistance genes and another 734 as encoding carbohydrate-active enzymes. CONCLUSION: The whole-genome sequence of this kiwifruit bacterial canker pathogen extends our knowledge of the P. savastanoi genome, sets the stage for further studies of the interaction between kiwifruit and P. savastanoi, and provides an important theoretical foundation for the prevention and control of bacterial canker.


Asunto(s)
Actinidia/microbiología , Frutas/microbiología , Genoma Bacteriano , Enfermedades de las Plantas/microbiología , Pseudomonas/genética , Composición de Base , Productos Agrícolas/genética , Productos Agrícolas/microbiología , Islas Genómicas , Pseudomonas/patogenicidad , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA