Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mitochondrial DNA B Resour ; 8(8): 903-907, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37645476

RESUMEN

Lonicera ligustrina is a folk medicinal herb in China and India with highly potential medicinal value. Here, we reported the complete chloroplast (cp) genome of L. ligustrina (GenBank accession number: ON968694). The cp genome was 155,330 bp long, with a large single-copy region (LSC) of 88,855 bp and a small single-copy region (SSC) of 18,647 bp separated by a pair of inverted repeats (IRs) of 23,914 bp. We also reconstructed the phylogeny of Lonicera using maximum likelihood (ML) method, including our data and previously reported cp genomes of related taxa. The current study indicated that L. ligustrina is sister with the Nintooa clade of subgen. Lonicera.

2.
BMC Genomics ; 24(1): 310, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291497

RESUMEN

BACKGROUND: Cuscuta, a parasitic plant species in the Convolvulaceae family, grows in many countries and regions. However, the relationship between some species is still unclear. Therefore, more studies are needed to assess the variation of the chloroplast (cp) genome in Cuscuta species and their relationship with subgenera or sections, thus, providing important information on the evolution of Cuscuta species. RESULTS: In the present study, we identified the whole cp genomes of C. epithymum, C. europaea, C. gronovii, C. chinensis and C. japonica, and then constructed a phylogenetic tree of 23 Cuscuta species based on the complete genome sequences and protein-coding genes. The complete cp genome sequences of C. epithymum and C. europaea were 96,292 and 97,661 bp long, respectively, and lacked an inverted repeat region. Most cp genomes of Cuscuta spp. have tetragonal and circular structures except for C. epithymum, C. europaea, C. pedicellata and C. approximata. Based on the number of genes and the structure of cp genome and the patterns of gene reduction, we found that C. epithymum and C. europaea belonged to subgenus Cuscuta. Most of the cp genomes of the 23 Cuscuta species had single nucleotide repeats of A and T. The inverted repeat region boundaries among species were similar in the same subgenera. Several cp genes were lost. In addition, the numbers and types of the lost genes in the same subgenus were similar. Most of the lost genes were related to photosynthesis (ndh, rpo, psa, psb, pet, and rbcL), which could have gradually caused the plants to lose the ability to photosynthesize. CONCLUSION: Our results enrich the data on cp. genomes of genus Cuscuta. This study provides new insights into understanding the phylogenetic relationships and variations in the cp genome of Cuscuta species.


Asunto(s)
Cuscuta , Genoma del Cloroplasto , Cuscuta/genética , Filogenia , Fotosíntesis
3.
Front Plant Sci ; 14: 1044581, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36890897

RESUMEN

Heptacodium miconioides Rehd., commonly known as "seven-son flower," is an ornamental species with a beautiful flower pattern and persistent sepals. Its sepals are of horticultural value, turning bright red and elongating in the autumn; however, the molecular mechanisms that cause sepal color change remain unclear. We analyzed the dynamic changes in anthocyanin composition in the sepal of H. miconioides at four developmental stages (S1-S4). A total of 41 anthocyanins were detected and classified into 7 major anthocyanin aglycones. High levels of the pigments cyanidin-3,5-O-diglucoside, cyanidin-3-O-galactoside, cyanidin-3-O-glucoside, and pelargonidin-3-O-glucoside were responsible for sepal reddening. Transcriptome analysis revealed 15 differentially expressed genes involved in anthocyanin biosynthesis that were detected between 2 developmental stages. Of these, the high expression of HmANS was considered critical structural gene related to anthocyanin biosynthesis pathway in the sepal through co-expression analysis with anthocyanin content. In addition, a transcription factor (TF)-metabolite correlation analysis revealed that three HmMYB, two HmbHLH, two HmWRKY, and two HmNAC TFs exhibited a strong positive role in the regulation of the anthocyanin structural genes (Pearson's correlation coefficient > 0.90). Luciferase activity assay showed that HmMYB114, HmbHLH130, HmWRKY6, and HmNAC1 could activate the promoters of HmCHS4 and HmDFR1 genes in vitro. These findings increase our understanding of anthocyanin metabolism in the sepal of H. miconioides and provide a guide for studies involving sepal color conversion and regulation.

4.
Mitochondrial DNA B Resour ; 8(1): 136-140, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36685644

RESUMEN

The complete chloroplast (cp) genome of Prunus phaeosticta (Hance) Maxim. has been characterized by reference-based assembly using Illumina paired-end data. The circular complete cp genome is 158,752 bp in length, comprising a large single-copy (LSC) region of 87,085 bp, a small single-copy (SSC) region of 18,923 bp, and a pair of inverted repeats (IRs) of 26,372 bp.A total of 129 functional genes were identified, including 84 protein-coding genes, 37 tRNA genes, and 8 ribosomal RNA genes. The phylogenetic analysis showed that P. phaeosticta displayed a kinship to Prunus zippeliana.

5.
Sci Rep ; 13(1): 87, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596857

RESUMEN

Species from the flowering plant genus Cyclamen are popular amongst consumers. In particular Cyclamen persicum Mill. has been significantly used commercially, and certain small flowering species such as Cyclamen hederifolium and Cyclamen coum are gradually growing in popularity in the potted flower market. Here, the chloroplast genomes of nine Cyclamen samples including four Cyclamen species and five varieties of C. hederifolium were sequenced for genome structure comparison, White green septal striped leaves related gene screening and DNA molecular markers were developed for phylogenetic analysis. In comparing Cyclamen species' chloroplast genomes, gene content and gene order were found to be highly similar with the length of genomes ranging from 151,626 to 153,058 bp. The chloroplast genome of Cyclamen has 128 genes, including 84 protein-coding genes, 36 transfer RNA genes, and 8 ribosomal RNA genes. Based on intraspecific variation, seven hotspots, including three genes and four intergenic regions, were identified as variable markers for downstream species delimitation and interspecific relationship analyses. Moreover, a phylogenetic tree constructed with complete chloroplast genomes, revealed that Cyclamen are monophyletic with Lysimachia as the closest neighbor. Phylogenetic analyses of the 14 Cyclamen species with the seven variable regions showed five distinct clades within this genus. The highly supported topologies showed these seven regions may be used as candidate DNA barcode sequences to distinguish Cyclamen species. White green septal striped leaves is common in C. hederifolium, however the molecular mechanism of this has not yet been described. Here, we find that the intergenic region rps4-trnT-UGU seems related to white green septal striped leaves.


Asunto(s)
Cyclamen , Genoma del Cloroplasto , Filogenia , Cyclamen/genética , Marcadores Genéticos , Orden Génico
6.
Mitochondrial DNA B Resour ; 7(5): 732-734, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35528252

RESUMEN

Lonicera crassifolia is a prostrate or creeping, evergreen Lonicera species endemic to southwest China. Here, we reported the complete chloroplast (cp) genome of L. crassifolia (GenBank accession number: OK393707). The cp genome was 154,731 bp long, with a large single-copy region (LSC) of 88,619 bp and a small single-copy region (SSC) of 18,642 bp separated by a pair of inverted repeats (IRs) of 23,735 bp. It encodes 130 genes, including 85 protein-coding genes, 37 tRNA genes, and 8 ribosomal RNA genes. We also reconstructed the phylogeny of Lonicera using the maximum-likelihood (ML) method, including our data and previously reported cp genomes of related taxa. The phylogenetic analysis showed that L. crassifolia is a sister to the remaining Nintooa clade with strong bootstrap support.

7.
Ying Yong Sheng Tai Xue Bao ; 33(4): 963-971, 2022 Apr.
Artículo en Chino | MEDLINE | ID: mdl-35543048

RESUMEN

A pot experiment was conducted to investigate the effects of drought stress and arbuscular mycorrhizal fungi (AMF) inoculation on C:N:P stoichiometry and non-structural carbohydrate (NSC) contents in two-year-old Heptacodium miconioides seedlings. There were four treatments, including control (CK), drought stress (D), AMF inoculation (AMF), and combined drought stress and AMF inoculation (D+AMF). The results showed that drought stress significantly reduced AMF colonization rate, whereas plant height and leaf number of inoculated treatment were significantly higher than the non-inoculated treatment. Inoculation with AMF significantly increased soluble sugar and NSC content in root and leaf, as well as starch content in stem and leaf. The inoculation significantly decreased the stem and leaf soluble sugar to starch ratio under drought stress. Drought stress caused a significant increase in C content in roots and leaves, and a significant decrease in P content in stems. Compared with no inoculation drought stress, P content in roots, stems, leaves, and C content in leaves of mycorrhizal seedlings were significantly increased by inoculation under drought stress, whereas root C and N content and stem C content were significantly reduced. Under drought stress, AMF inoculation significantly decreased C:N, C:P, and N:P ratios in roots and stems, and N:P ratios in leaves of H. miconioides. P content in roots and leaves were significantly positively correlated with soluble sugar and NSC content. Stem P content was significantly positively correlated with starch and NSC content. N:P ratios in each organ was significantly negatively correlated with NSC content. In all, inoculation with AMF can improve the drought tolerance of H. miconioides seedling by increasing soluble sugar content in roots and leaves and the soluble sugar/starch ratio in roots, improving starch content in above-ground organs, promoting the P absorption, and reducing N:P ratios in each organ. Therefore, AMF colonization could improve the survival rate of H. miconioides seedling in dry environments.


Asunto(s)
Micorrizas , Carbohidratos , Sequías , Raíces de Plantas/microbiología , Plantones , Almidón , Azúcares
8.
Front Plant Sci ; 12: 754209, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721483

RESUMEN

Species identification is vital for protecting species diversity and selecting high-quality germplasm resources. Wild Fragaria spp. comprise rich and excellent germplasm resources; however, the variation and evolution of the whole chloroplast (cp) genomes in the genus Fragaria have been ignored. In the present study, 27 complete chloroplast genomes of 11 wild Fragaria species were sequenced using the Illumina platform. Then, the variation among complete cp genomes of Fragaria was analyzed, and phylogenetic relationships were reconstructed from those genome sequences. There was an overall high similarity of sequences, with some divergence. According to analysis with mVISTA, non-coding regions were more variable than coding regions. Inverted repeats (IRs) were observed to contract or expand to different degrees, which resulted in different sizes of cp genomes. Additionally, five variable loci, trnS-trnG, trnR-atpA, trnC-petN, rbcL-accD, and psbE-petL, were identified that could be used to develop DNA barcoding for identification of Fragaria species. Phylogenetic analyses based on the whole cp genomes supported clustering all species into two groups (A and B). Group A species were mainly distributed in western China, while group B contained several species from Europe and Americas. These results support allopolyploid origins of the octoploid species F. chiloensis and F. virginiana and the tetraploid species F. moupinensis and F. tibetica. The complete cp genomes of these Fragaria spp. provide valuable information for selecting high-quality Fragaria germplasm resources in the future.

9.
Mitochondrial DNA B Resour ; 6(2): 480-482, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33628896

RESUMEN

Prunus fasciculata is a wild species of Prunus native to western North America. Here, we reported the complete chloroplast (cp) genome of P. fasciculata (GenBank accession number: MW160273). The cp genome was 157,986 bp long, with a large single-copy (LSC) region of 86,068 bp and a small single-copy (SSC) region of 19,166 bp separated by a pair of inverted repeats (IRs) of 26,376 bp. It encodes 129 genes, including 84 protein-coding genes, 37 tRNA genes, and eight ribosomal RNA genes. We also reconstructed the phylogeny of Prunus sensu lato using maximum-likelihood (ML) method, including our data and previously reported cp genomes of related taxa. The phylogenetic analysis confirmed the sister group relationship between P. fasciculata and the remaining subg. Prunus.

10.
Mitochondrial DNA B Resour ; 6(1): 200-201, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33537443

RESUMEN

Cerasus fengyangshanica is a wild flowering cherry endemic to Mount Fengyang, China. Here, we reported the complete chloroplast (cp) genome of C. fengyangshanica (GenBank accession number: MW160272). The cp genome was 157,964 bp long, with a large single-copy region (LSC) of 85,972 bp and a small single-copy region (SSC) of 19,086 bp separated by a pair of inverted repeats (IRs) of 26,453 bp. It encodes 129 genes, including 84 protein-coding genes, 37 tRNA genes, and 8 ribosomal RNA genes. We also reconstructed the phylogeny of Prunus sensu lato using maximum likelihood (ML) method, including our data and previously reported cp genomes of related taxa. The phylogenetic analysis indicated that C. fengyangshanica is closely related with Prunus maximowiczii.

11.
Mitochondrial DNA B Resour ; 5(3): 3624-3626, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33367034

RESUMEN

Prunus fruticosa is a wild species of Prunus distributed across the central Eurasia. Here, we reported the complete chloroplast (cp) genome of P. fruticosa (GenBank accession number: MT916286). The cp genome was 158,217 bp long, with a large single-copy region (LSC) of 86,322 bp and a small single-copy region (SSC) of 19,153 bp separated by a pair of inverted repeats (IRs) of 26,371 bp. It encodes 129 genes, including 84 protein-coding genes, 37 tRNA genes, and 8 ribosomal RNA genes. We also reconstructed the phylogeny of Prunus sensu lato using maximum likelihood (ML) method, including our data and previously reported cp genomes of related taxa. The phylogenetic analysis indicated that P. fruticosa is closely related with Prunus avium.

12.
Hortic Res ; 7: 165, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33082971

RESUMEN

Cerasus serrulata is a flowering cherry germplasm resource for ornamental purposes. In this work, we present a de novo chromosome-scale genome assembly of C. serrulata by the use of Nanopore and Hi-C sequencing technologies. The assembled C. serrulata genome is 265.40 Mb across 304 contigs and 67 scaffolds, with a contig N50 of 1.56 Mb and a scaffold N50 of 31.12 Mb. It contains 29,094 coding genes, 27,611 (94.90%) of which are annotated in at least one functional database. Synteny analysis indicated that C. serrulata and C. avium have 333 syntenic blocks composed of 14,072 genes. Blocks on chromosome 01 of C. serrulata are distributed on all chromosomes of C. avium, implying that chromosome 01 is the most ancient or active of the chromosomes. The comparative genomic analysis confirmed that C. serrulata has 740 expanded gene families, 1031 contracted gene families, and 228 rapidly evolving gene families. By the use of 656 single-copy orthologs, a phylogenetic tree composed of 10 species was constructed. The present C. serrulata species diverged from Prunus yedoensis ~17.34 million years ago (Mya), while the divergence of C. serrulata and C. avium was estimated to have occurred ∼21.44 Mya. In addition, a total of 148 MADS-box family gene members were identified in C. serrulata, accompanying the loss of the AGL32 subfamily and the expansion of the SVP subfamily. The MYB and WRKY gene families comprising 372 and 66 genes could be divided into seven and eight subfamilies in C. serrulata, respectively, based on clustering analysis. Nine hundred forty-one plant disease-resistance genes (R-genes) were detected by searching C. serrulata within the PRGdb. This research provides high-quality genomic information about C. serrulata as well as insights into the evolutionary history of Cerasus species.

13.
Mitochondrial DNA B Resour ; 5(3): 3394-3396, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-33458183

RESUMEN

Platycrater arguta is a rare and endangered shrub species endemic to East Asia. Here, we report the complete chloroplast (cp) genome structure and its taxonomic position within Hydrangeaceae to promote its conservation and restoration. The complete cp genome of P. arguta was 157,810 bp in length and contained a large single-copy region (LSC) of 86,823 bp and a small single-copy region (SSC) of 18,735 bp, as well as a pair of inverted repeat (IR) regions of 26,126 bp, each. 113 unique genes are predicted in this cp genome, including 79 protein-coding genes, 30 transfer RNA (tRNA) genes and 4 rRNAs. Maximum-likelihood (ML) phylogenetic analysis based on 79 shared cp CDS (coding DNA sequences) of 19 species reveals a close relationship between P. arguta and Schizophragma hydrangeoides.

14.
Biochem Biophys Res Commun ; 512(4): 914-920, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-30929916

RESUMEN

In eukaryotic cells, Endoplasmic Reticulum (ER) is an interconnected membranous organelle and plays important roles in protein synthesis and lipid metabolism. We have previously demonstrated that TMCO1 is an ER Ca2+ channel actively preventing ER Ca2+ overloading. Recently, we also found that TMCO1 deficiency in mouse granulosa cells (GCs) caused abnormal Ca2+ signaling, ER stress and enhanced reactive oxygen species (ROS). In this study, we further examined the roles of TMCO1 in lipid metabolism and mitochondrial functions. Intriguingly, we found that TMCO1 deletion reduced the number of lipid droplets (LDs) and the content of triglyceride (TG), which was due to ER stress associated degradation (ERAD) of the important enzyme in catalyzing TG synthesis, diacylglycerol acyltransferase 2 (DGAT2). Hypofunction in transforming non-esterification fatty acid (NEFA) to TG caused NEFA deposit, a potential risk of mitochondrial dysfunction. Furthermore, in TMCO1 deficient cells, mitochondria volume decreased and inefficient oxidative phosphorylation was detected, which underlined enhanced mitophagy and impaired mitochondrial functions. Taken these data together, we for the first time revealed the role of TMCO1 in regulating lipid-metabolism and mitochondrial function. This study may provide new insights into understanding TMCO1 defect syndrome.


Asunto(s)
Canales de Calcio/metabolismo , Diacilglicerol O-Acetiltransferasa/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Mitocondrias/metabolismo , Animales , Canales de Calcio/genética , Ácidos Grasos/metabolismo , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Gotas Lipídicas/metabolismo , Ratones Noqueados , Mitocondrias/patología , Mitofagia/genética , Consumo de Oxígeno , Triglicéridos/metabolismo
15.
Mitochondrial DNA B Resour ; 4(2): 2129-2130, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-33365439

RESUMEN

Reineckia carnea is an important horticultural and medicinal plant in East Asia. Here, we determined the first complete chloroplast genome of R. carnea using genome skimming approach. The cp genome was 157,059 bp long, with a large single-copy region (LSC) of 85,474 bp and a small single-copy region (SSC) of 18,535 bp separated by a pair of inverted repeats (IRs) of 26,525 bp. It encodes 132 genes, including 86 protein-coding genes, 38 tRNA genes, and eight ribosomal RNA genes. The phylogenetic analysis indicated that R. carnea is close related to Rohdea chinensis.

16.
Mitochondrial DNA B Resour ; 4(2): 2349-2350, 2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-33365538

RESUMEN

Hylomecon japonica, a widespread species in East Asia, is a valuable horticultural and medicinal plant. Here, we obtained the first complete sequence of the H. japonica chloroplast genome. The complete cp genome was 160,011 bp long, with a large single-copy region (LSC, 88,165 bp) and a small single copy region (SSC, 18,378 bp) separated by a pair of inverted repeats (IRs, 26,734 bp). The cp genome contained 114 unique genes, including 80 protein-coding genes, 30 tRNA genes, and four rRNA genes. The phylogenetic analysis indicated that H. japonica is close related with Coreanomecon hylomeconoides.

17.
Mitochondrial DNA B Resour ; 4(2): 3010-3011, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-33365832

RESUMEN

Cerasus kumanoensis is a recently described wild cherry species from the Kii Peninsula, Japan. Here we determined the first complete chloroplast genome of C. kumanoensis using genome skimming approach. The cp genome was 157,898 bp long, with a large single-copy region (LSC) of 85,926 bp and a small single-copy region (SSC) of 19,070 bp separated by a pair of inverted repeats (IRs) of 26,451 bp. It encodes 129 genes, including 84 protein-coding genes, 37 tRNA genes, and 8 ribosomal RNA genes. Besides, we reconstructed the phylogeny of Prunus using maximum likelihood (ML) method, including our data and previously reported cp genomes of related taxa. The phylogenetic analysis indicated that C. kumanoensis is close related with a group including Prunus takesimensis and P. speciosa.

18.
Mitochondrial DNA B Resour ; 4(2): 3402-3403, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33366013

RESUMEN

Prunus emarginata is a species of Prunus native to western North America.We determined the first complete chloroplast genome of P. emarginata using genome skimming approach. The cp genome was 157,458 bp long, with a large single-copy region (LSC) of 85,567 bp and a small single-copy region (SSC) of 19,121 bp separated by a pair of inverted repeats (IRs) of 26,385 bp. It encodes 129 genes, including 84 protein-coding genes, 37 tRNA genes, and 8 ribosomal RNA genes. We also reconstructed the phylogeny of Prunus sensu lato using maximum likelihood (ML) method, including our data and previously reported cp genomes of related taxa. The phylogenetic analysis indicated that P. emarginata is closely related with Prunus subhirtella var. subhirtella and Prunus yedoensis.

19.
Mitochondrial DNA B Resour ; 4(2): 3558-3559, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33366084

RESUMEN

Prunus pensylvanica is one of the two native cherry species of North America. We determined the first complete chloroplast genome of P. pensylvanica using genome-skimming approach. The cp genome was 157,953 bp long, with a large single-copy region (LSC) of 86,030 bp and a small single-copy region (SSC) of 19,135 bp separated by a pair of inverted repeats (IRs) of 26,394 bp. It encodes 129 genes, including 84 protein-coding genes, 37 tRNA genes, and 8 ribosomal RNA genes. We also reconstructed the phylogeny of Prunus sensu lato using maximum likelihood (ML) method, including our data and previously reported cp genomes of related taxa. The phylogenetic analysis indicated that P. pensylvanica is closely related to P. emarginata.

20.
Mitochondrial DNA B Resour ; 5(1): 160-161, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-33366467

RESUMEN

Prunus rufa is a species of Prunus native to the Himalayan region. We determined the first complete chloroplast genome of P. rufa using a genome skimming approach. The cp genome was 157,723 bp long, with a large single-copy region (LSC) of 85,860 bp and a small single-copy region (SSC) of 19,081 bp separated by a pair of inverted repeats (IRs) of 26,391 bp each. It encodes 129 genes, including 84 protein-coding genes, 37 tRNA genes, and 8 ribosomal RNA genes. We also reconstructed the phylogeny of Prunus sensu lato using maximum-likelihood (ML) method, including our data and previously reported cp genomes of related taxa. The phylogenetic analysis indicated that P. rufa is closely related to Prunus cerasoides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...