Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 9(7): e102529, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25036785

RESUMEN

Flowering time and plant height are important agronomic traits for crop production. In this study, we characterized a semi-dwarf and late flowering (dlf1) mutation of rice that has pleiotropic effects on these traits. The dlf1 mutation was caused by a T-DNA insertion and the cloned Dlf1 gene was found to encode a WRKY transcription factor (OsWRKY11). The dlf1 mutant contains a T-DNA insertion at the promoter region, leading to enhanced accumulation of Dlf1 transcripts, resulting in a semidominant mutation. The dlf1 mutation suppressed the transcription of Ehd2/RID1/OsId1 and its downstream flowering-time genes including Hd1, Ehd1 and Hd3a under both long-day (LD) and short-day (SD) conditions. Knock-down of Dlf1 expression exhibited early flowering at LD condition related to the wild-type plants. Accumulation of Dlf1 mRNA was observed in most tissues, and two splicing forms of Dlf1 cDNAs were obtained (OsWRKY11.1 and OsWRKY11.2). These two proteins showed transactivation activity in yeast cells. Dlf1 protein was found to be localized in the nucleus. Enhanced expression of OsWRKY11.2 or its 5' truncated gene showed similar phenotypes to the dlf1 mutant, suggesting that it might function as a negative regulator. We conclude that Dlf1 acts as a transactivator to downregulate Ehd2/RID1/OsId1 in the signal transduction pathway of flowering and plays an important role in the regulation of plant height in rice.


Asunto(s)
Genes de Plantas , Oryza/genética , Proteínas de Plantas/fisiología , Factores de Transcripción/fisiología , Empalme Alternativo , Ritmo Circadiano/genética , ADN Bacteriano/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Mutagénesis Insercional , Cebollas , Oryza/crecimiento & desarrollo , Fenotipo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Estructura Terciaria de Proteína , ARN de Planta/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo , Factores de Transcripción/genética , Activación Transcripcional , Levaduras
2.
J Integr Plant Biol ; 55(11): 1016-25, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23945310

RESUMEN

A narrow leaf mutant was isolated from transgenic rice (Oryza sativa L.) lines carrying a T-DNA insertion. The mutant is characterized by narrow leaves during its whole growth period, and was named nal9 (narrow leaf 9). The mutant also has other phenotypes, such as light green leaves at the seedling stage, reduced plant height, a small panicle and increased tillering. Genetic analysis revealed that the mutation is controlled by a single recessive gene. A hygromycin resistance assay showed that the mutation was not caused by T-DNA insertion, so a map-based cloning strategy was employed to isolate the nal9 gene. The mutant individuals from the F2 generations of a cross between the nal9 mutant and Longtepu were used for mapping. With 24 F2 mutants, the nal9 gene was preliminarily mapped near the marker RM156 on the chromosome 3. New INDEL markers were then designed based on the sequence differences between japonica and indica at the region near RM156. The nal9 gene was finally located in a 69.3 kb region between the markers V239B and V239G within BAC OJ1212_C05 by chromosome walking. Sequence and expression analysis showed that an ATP-dependent Clp protease proteolytic subunit gene (ClpP) was most likely to be the nal9 gene. Furthermore, the nal9 mutation was rescued by transformation of the ClpP cDNA driven by the 35S promoter. Accordingly, the ClpP gene was identified as the NAL9 gene. Our results provide a basis for functional studies of NAL9 in future work.


Asunto(s)
Mutación/genética , Oryza/anatomía & histología , Oryza/genética , Mapeo Físico de Cromosoma , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Segregación Cromosómica/genética , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Estudios de Asociación Genética , Prueba de Complementación Genética , Pleiotropía Genética , Mutagénesis Insercional/genética , Oryza/citología , Oryza/ultraestructura , Fenotipo , Pigmentos Biológicos/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/ultraestructura , Plantas Modificadas Genéticamente
3.
Proc Natl Acad Sci U S A ; 110(1): 76-81, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23256151

RESUMEN

Rice is a major staple food worldwide. Making hybrid rice has proved to be an effective strategy to significantly increase grain yield. Current hybrid rice technologies rely on male sterile lines and have been used predominantly in indica cultivars. However, intrinsic problems exist in the implementation of these technologies, such as limited germplasms and unpredictable conversions from sterility to fertility in the field. Here, we describe a photoperiod-controlled male sterile line, carbon starved anther (csa), which contains a mutation in an R2R3 MYB transcription regulator of pollen development. This mutation was introduced into indica and japonica rice, and it rendered male sterility under short-day conditions and male fertility under long-day conditions in both lines. Furthermore, F(1) plants of csa and a restorer line JP69 exhibited heterosis (hybrid vigor), suggesting the feasibility of using this mutation to create hybrid rice. The csa-based photoperiod-sensitive male sterile line allows the establishment of a stable two-line hybrid system, which promises to have a significant impact on agriculture.


Asunto(s)
Agricultura/métodos , Cruzamiento/métodos , Hibridación Genética/genética , Oryza/genética , Proteínas de Plantas/genética , Semillas/crecimiento & desarrollo , Radioisótopos de Carbono/análisis , Fertilidad/genética , Flores/química , Análisis por Micromatrices , Anotación de Secuencia Molecular , Mutación/genética , Fotoperiodo , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
Plant J ; 72(5): 805-16, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22882529

RESUMEN

The phytohormone auxin plays a critical role in plant growth and development, and its spatial distribution largely depends on the polar localization of the PIN-FORMED (PIN) auxin efflux carrier family members. In this study, we identify a putative auxin efflux carrier gene in rice, OsPIN3t, which acts in auxin polar transport but is also involved in the drought stress response in rice. We show that OsPIN3t-GFP fusion proteins are localized in plasma membranes, and this subcellular localization changes under 1-N-naphthylphthalamic acid (NPA) treatment. The tissue-specific expression patterns of OsPIN3t were also investigated using a ß-glucuronidase (GUS) reporter, which showed that OsPIN3t was mainly expressed in vascular tissue. The GUS activity in OsPIN3tpro::GUS plants increased by NAA treatment and decreased by NPA treatment. Moreover, knockdown of OsPIN3t caused crown root abnormalities in the seedling stage that could be phenocopied by treatment of wild-type plants with NPA, which indicated that OsPIN3t is involved in the control of polar auxin transport. Overexpression of OsPIN3t led to improved drought tolerance, and GUS activity significantly increased when OsPIN3tpro::GUS plants were subjected to 20% polyethylene glycol stress. Taken together, these results suggest that OsPIN3t is involved in auxin transport and the drought stress response, which suggests that a polar auxin transport pathway is involved in the regulation of the response to water stress in plants.


Asunto(s)
Proteínas Portadoras/metabolismo , Oryza/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico/efectos de los fármacos , Proteínas Portadoras/genética , Membrana Celular/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ácidos Indolacéticos/metabolismo , Datos de Secuencia Molecular , Oryza/efectos de los fármacos , Ftalimidas/farmacología , Proteínas de Plantas/genética , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Plantones/genética
6.
Plant Cell Environ ; 35(11): 1932-47, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22548236

RESUMEN

The BURP-domain protein family comprises a diverse group of plant-specific proteins that share a conserved BURP domain at the C terminus. However, there have been only limited studies on the functions and subcellular localization of these proteins. Members of the RD22-like subfamily are postulated to associate with stress responses due to the stress-inducible nature of some RD22-like genes. In this report, we used different transgenic systems (cells and in planta) to show that the expression of a stress-inducible RD22-like protein from soybean (GmRD22) can alleviate salinity and osmotic stress. We also performed detailed microscopic studies using both fusion proteins and immuno-electron microscopic techniques to demonstrate the apoplast localization of GmRD22, for which the BURP domain is a critical determinant of the subcellular localization. The apoplastic GmRD22 interacts with a cell wall peroxidase and the ectopic expression of GmRD22 in both transgenic Arabidopsis thaliana and transgenic rice resulted in increased lignin production when subjected to salinity stress. It is possible that GmRD22 regulates cell wall peroxidases and hence strengthens cell wall integrity under such stress conditions.


Asunto(s)
Glycine max/genética , Proteínas de Plantas/fisiología , Estrés Fisiológico , Secuencias de Aminoácidos , Arabidopsis/genética , Clonación Molecular , Oryza/genética , Presión Osmótica , Peroxidasa/metabolismo , Filogenia , Proteínas de Plantas/análisis , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente , Glycine max/metabolismo , Glycine max/fisiología , Nicotiana/genética
7.
Mol Plant ; 5(1): 63-72, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21859960

RESUMEN

To better understand the response of rice to nutrient stress, we have taken a systematic approach to identify rice genes that respond to deficiency of macronutrients and affect rice growth. We report here the expression and biological functions of a previously uncharacterized rice gene that we have named NRR (nutrition response and root growth). NRR is alternatively spliced, producing two 5'-coterminal transcripts, NRRa and NRRb, encoding two proteins of 308 and 223 aa, respectively. Compared to NRRb, NRRa possesses an additional CCT domain at the C-terminus. Expression of NRR in rice seedling roots was significantly influenced by deficiency of macronutrients. Knock-down of expression of NRRa or NRRb by RNA interference resulted in enhanced rice root growth. By contrast, overexpression of NRRa in rice exhibited significantly retarded root growth. These results revealed that both NRRa and NRRb played negative regulatory roles in rice root growth. Our findings suggest that NRRa and NRRb, acting as the key components, modulate the rice root architecture with the availability of macronutrients.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Fósforo/deficiencia , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Empalme Alternativo , Nitrógeno/deficiencia , Oryza/química , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raíces de Plantas/química , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Potasio/metabolismo , Estructura Terciaria de Proteína
8.
Plant J ; 65(5): 820-8, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21251104

RESUMEN

Small silencing RNAs (sRNAs) are non-coding RNA regulators that negatively regulate gene expression by guiding mRNA degradation, translation repression or chromatin modification. Plant sRNAs play crucial roles in various developmental processes, hormone signaling, immune responses and adaptation to a variety of abiotic stresses. miR441 and miR446 were previously annotated as microRNAs (miRNAs) because their precursors can form typical stem-loop structures, but are not considered as real miRNAs because of inconsistency with some ancillary criteria of the recent guidelines for annotation of plant miRNAs. We tentatively rename them small interfering (si)R441 and siR446, respectively, in this study. It has recently been shown that the precursors of siR441 and siR446 might originate from the miniature inverted-repeat transposable element (MITE) Stowaway1. In this report, we show that, in contrast with Dicer-like (DCL)3- and RNA-dependent RNA polymerase (RDR)2-dependent MITE-derived ra-siRNAs, siR441 and siR446 are processed by OsDCL3a but independent of OsRDR2, indicating that siR441 and siR446 are generated from single-stranded stem-loop precursors. We also show that abscisic acid (ABA) and abiotic stresses downregulate the expression of siR441 and siR446 but, surprisingly, increase the accumulation of their precursors in rice plants, implying that processing of siRNA precursors is inhibited. We provide evidence to show that this defective processing is due to increased precursor accumulation per se, possibly by intermolecular self-pairing of the processing intermediate sequences, thus hindering their normal processing. Functional examinations indicate that siR441 and siR446 are positive regulators of rice ABA signaling and tolerance to abiotic stress, possibly by regulating MAIF1 expression.


Asunto(s)
Ácido Abscísico/metabolismo , Oryza/genética , ARN de Planta/metabolismo , ARN Pequeño no Traducido/metabolismo , Elementos Transponibles de ADN , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Secuencias Invertidas Repetidas , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , ARN de Planta/genética , ARN Pequeño no Traducido/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Ribonucleasa III/metabolismo , Estrés Fisiológico
9.
Mol Plant ; 4(1): 190-7, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21059694

RESUMEN

As one of the largest gene families, F-box domain proteins have important roles in regulating various developmental processes and stress responses. In this study, we have investigated a rice F-box domain gene, MAIF1. The MAIF1 protein is mainly localized in the plasma membrane and nucleus. MAIF1 expression is induced rapidly and strongly by abscisic acid (ABA) and abiotic stresses. MAIF1 expression is also induced in root tips by sucrose, independent of its hydrolytic hexose products, glucose and fructose, and the plant hormones auxin and cytokinin. Overexpression of MAIF1 reduces rice ABA sensitivity and abiotic stress tolerance and promotes rice root growth. These results suggest that MAIF1 is involved in multiple signaling pathways in regulating root growth. Growth restraint in plants is an acclimatization strategy against abiotic stress. Our results also suggest that MAIF1 plays the negative role in response to abiotic stress possibly by regulating root growth.


Asunto(s)
Proteínas F-Box/metabolismo , Expresión Génica , Oryza/fisiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Ácido Abscísico/metabolismo , Secuencia de Aminoácidos , Proteínas F-Box/química , Proteínas F-Box/genética , Datos de Secuencia Molecular , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Transporte de Proteínas , Alineación de Secuencia , Estrés Fisiológico
10.
Plant Biotechnol J ; 9(4): 513-24, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-20955181

RESUMEN

The cell wall plays important roles in plant architecture and morphogenesis. The cellulose synthase-like super-families were reported to contain glycosyltransferases motif and are required for the biosynthesis of cell wall polysaccharides. Here, we describe a curled leaf and dwarf mutant, cd1, in rice, which exhibits multiple phenotypic traits such as the reduction of plant height and leaf width, curled leaf morphology and a decrease in the number of grains and in the panicle length. Map-based cloning indicates that a member of the cellulose synthase-like D (CSLD) group is a candidate for OsCD1. RNAi transgenic plants with the candidate CSLD gene display a similar phenotype to the cd1 mutant, suggesting that OsCD1 is a member of the CSLD sub-family. Furthermore, sequence analysis indicates that OsCD1 contains the common D,D,D,QXXRW motif, which is a feature of the cellulose synthase-like super-family. Analysis of OsCD1 promoter with GUS fusion expression shows that OsCD1 exhibits higher expression in young meristem tissues such as fresh roots, young panicle and stem apical meristem. Cell wall composition analysis reveals that cellulose content and the level of xylose are significantly reduced in mature culm owing to loss of OsCD1 function. Take together, the work presented here is useful for expanding the understanding of cell wall biosynthesis.


Asunto(s)
Glucosiltransferasas/metabolismo , Oryza/enzimología , Oryza/crecimiento & desarrollo , Pared Celular/química , Celulosa/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glucosiltransferasas/genética , Glucógeno Sintasa/metabolismo , Oryza/anatomía & histología , Oryza/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo
11.
BMC Plant Biol ; 10: 290, 2010 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-21192820

RESUMEN

BACKGROUND: In plants, HIR (Hypersensitive Induced Reaction) proteins, members of the PID (Proliferation, Ion and Death) superfamily, have been shown to play a part in the development of spontaneous hypersensitive response lesions in leaves, in reaction to pathogen attacks. The levels of HIR proteins were shown to correlate with localized host cell deaths and defense responses in maize and barley. However, not much was known about the HIR proteins in rice. Since rice is an important cereal crop consumed by more than 50% of the populations in Asia and Africa, it is crucial to understand the mechanisms of disease responses in this plant. We previously identified the rice HIR1 (OsHIR1) as an interacting partner of the OsLRR1 (rice Leucine-Rich Repeat protein 1). Here we show that OsHIR1 triggers hypersensitive cell death and its localization to the plasma membrane is enhanced by OsLRR1. RESULT: Through electron microscopy studies using wild type rice plants, OsHIR1 was found to mainly localize to the plasma membrane, with a minor portion localized to the tonoplast. Moreover, the plasma membrane localization of OsHIR1 was enhanced in transgenic rice plants overexpressing its interacting protein partner, OsLRR1. Co-localization of OsHIR1 and OsLRR1 to the plasma membrane was confirmed by double-labeling electron microscopy. Pathogen inoculation studies using transgenic Arabidopsis thaliana expressing either OsHIR1 or OsLRR1 showed that both transgenic lines exhibited increased resistance toward the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. However, OsHIR1 transgenic plants produced more extensive spontaneous hypersensitive response lesions and contained lower titers of the invading pathogen, when compared to OsLRR1 transgenic plants. CONCLUSION: The OsHIR1 protein is mainly localized to the plasma membrane, and its subcellular localization in that compartment is enhanced by OsLRR1. The expression of OsHIR1 may sensitize the plant so that it is more prone to HR and hence can react more promptly to limit the invading pathogens' spread from the infection sites.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/genética , Oryza/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiología , Western Blotting , Membrana Celular/ultraestructura , Interacciones Huésped-Patógeno , Inmunidad Innata/genética , Proteínas Repetidas Ricas en Leucina , Proteínas de la Membrana/metabolismo , Microscopía Inmunoelectrónica , Datos de Secuencia Molecular , Oryza/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Proteínas/genética , Proteínas/metabolismo , Pseudomonas syringae/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Xanthomonas/fisiología
12.
Sheng Wu Gong Cheng Xue Bao ; 25(9): 1394-401, 2009 Sep.
Artículo en Chino | MEDLINE | ID: mdl-19938484

RESUMEN

The preliminary role of calcineurin B-like protein-interacting protein kinases (CIPKs) in stress response is defined but the exact function of OsCIPK10 gene in rice stress response and its expression pattern yet unclear. In this study we explored the possible functions of OsCIPK10 gene by reverse genetics approaches and also revealed its expression pattern by GUS staining. From the preliminary study of this gene we presumed its function to assist plant to resist stress but over-expressed OsCIPK10 rice transgenic lines showed no significant phenotypic differences from the wild type either under high salt or low potassium conditions, however the gene knockdown plants using inverted repeat strategy presented meaningful healthy plants compared to wild type under the stress of salt. Further we checked the expression profile under high salt and low potassium conditions in wild type and found that OsCIPK10 decreases under high salt and increases on low potassium conditions. So we speculate that OsCIPK10 is actually going to function in response to high salt and low potassium stress. We also explored the expression pattern of this gene using Gus staining and found that gene expresses in all plant tissues, the only exception observed was its higher expression in the vascular tissues.


Asunto(s)
Oryza/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Clonación Molecular , Genes de Plantas , Oryza/enzimología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Potasio/farmacología , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Plantas Tolerantes a la Sal/genética , Cloruro de Sodio/farmacología , Estrés Fisiológico
13.
Planta ; 230(4): 649-58, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19579033

RESUMEN

Tiller number is highly regulated by controlling the formation of tiller bud and its subsequent outgrowth in response to endogenous and environmental signals. Here, we identified a rice mutant htd2 from one of the 15,000 transgenic rice lines, which is characterized by a high tillering and dwarf phenotype. Phenotypic analysis of the mutant showed that the mutation did not affect formation of tiller bud, but promoted the subsequent outgrowth of tiller bud. To isolate the htd2 gene, a map-based cloning strategy was employed and 17 new insertions-deletions (InDels) markers were developed. A high-resolution physical map of the chromosomal region around the htd2 gene was made using the F(2) and F(3) population. Finally, the gene was mapped in 12.8 kb region between marker HT41 and marker HT52 within the BAC clone OSJNBa0009J13. Cloning and sequencing of the target region from the mutant showed that the T-DNA insertion caused a 463 bp deletion between the promoter and first exon of an esterase/lipase/thioesterase family gene in the 12.8 kb region. Furthermore, transgenic rice with reduced expression level of the gene exhibited an enhanced tillering and dwarf phenotype. Accordingly, the esterase/lipase/thioesterase family gene (TIGR locus Os03g10620) was identified as the HTD2 gene. HTD2 transcripts were expressed mainly in leaf. Loss of function of HTD2 resulted in a significantly increased expression of HTD1, D10 and D3, which were involved in the strigolactone biosynthetic pathway. The results suggest that the HTD2 gene could negatively regulate tiller bud outgrowth by the strigolactone pathway.


Asunto(s)
Flores/crecimiento & desarrollo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Oryza/crecimiento & desarrollo , Oryza/genética , Proteínas de Plantas/genética , Segregación Cromosómica , Clonación Molecular , ADN Bacteriano/genética , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Mutagénesis Insercional , Mutación/genética , Oryza/anatomía & histología , Fenotipo , Filogenia , Mapeo Físico de Cromosoma , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
14.
PLoS One ; 4(6): e5891, 2009 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-19521518

RESUMEN

Photoperiod and temperature are two important environmental factors that influence the heading-date of rice. Although the influence of the photoperiod on heading has been extensively reported in rice, the molecular mechanism for the temperature control of heading remains unknown. This study reports an early heading mutant derived from tissue culture lines of rice and investigates the heading-date of wild type and mutant in different photoperiod and temperature treatments. The linkage analysis showed that the mutant phenotype cosegregated with the Hd1 locus. Sequencing analysis found that the mutant contained two insertions and several single-base substitutions that caused a dramatic reduction in Hd1mRNA levels compared with wild type. The expression patterns of Hd1 and Hd3a were also analyzed in different photoperiod and temperature conditions, revealing that Hd1 mRNA levels displayed similar expression patterns for different photoperiod and temperature treatments, with high expression levels at night and reduced levels in the daytime. In addition, Hd1 displayed a slightly higher expression level under long-day and low temperature conditions. Hd3a mRNA was present at a very low level under low temperature conditions regardless of the day-length. This result suggests that suppression of Hd3a expression is a principle cause of late heading under low temperature and long-day conditions.


Asunto(s)
Genes de Plantas , Oryza/fisiología , Alelos , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Luz , Datos de Secuencia Molecular , Mutación , Oryza/genética , Fotoperiodo , Fenómenos Fisiológicos de las Plantas , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico , Temperatura , Factores de Tiempo
15.
Genomics ; 93(2): 169-78, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18996467

RESUMEN

To study how changes in gene regulation shape phenotypic variations in rice, we performed a comparative analysis of genome expression in the heading-stage panicle from six lineages of cultivated and wild rice, including Oryza sativa subsp. indica, japonica and javanica, O. nivara , O. rufipogon and O. glaberrima. While nearly three-quarters of the genes are expressed at a constant level in all six lineages, a large portion of the genome, ranging from 1767 to 4489 genes, exhibited differential expression between Asian domesticated and wild rice with repression or down-regulation of genome expression in Asian cultivated rice as the dominant trend. Importantly, we found this repression was achieved to a large extent by the differential expression of a single member of paralogous gene families. Functional analysis of the differentially expressed genes revealed that genes related to catabolism are repressed while genes related to anabolism up-regulated. Finally, we observed that distinct evolutionary forces may have acted on gene expression and the coding sequences in the examined rice lineages.


Asunto(s)
Productos Agrícolas/clasificación , Productos Agrícolas/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Oryza/clasificación , Oryza/genética , Linaje de la Célula , Análisis por Conglomerados , Evolución Molecular , Análisis por Micromatrices , Modelos Genéticos , Programas Informáticos
16.
Arch Environ Contam Toxicol ; 56(4): 723-31, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-18787889

RESUMEN

There has been little agreement regarding the mechanism by which proline reduces heavy metal stress. The present work examines the relationship between Hg(2+)-induced oxidative stress and proline accumulation in rice and explores the possible mechanisms through which proline protects against Hg(2+) stress. The effect of proline on alleviation of Hg(2+) toxicity was studied by spectrophotography and enzymatic methods. Hg(2+) induced oxidative stress in rice by increasing lipid peroxidation. Pretreatment of the rice with 2 mM proline for 12 h profoundly alleviated Hg(2+)-induced lipid peroxidation and minimized H(2)O(2) accumulation. Proline pretreatment significantly reduced (p < 0.01) the Hg(2+) content in rice leaves. A comparison of the effects of proline pretreatment on H(2)O(2) accumulation by Hg(2+) and aminotrazole suggested that proline protected cells from Hg(2+)-induced oxidative stress by scavenging reactive oxygen species. The present work demonstrates a protective effect of proline on Hg(2+) toxicity through detoxifying reactive oxygen species, rather than chelating metal ions or maintaining the water balance under Hg(2+) stress.


Asunto(s)
Antioxidantes/farmacología , Compuestos de Mercurio/toxicidad , Oryza/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Prolina/farmacología , Contaminantes Químicos del Agua/toxicidad , Adaptación Fisiológica/genética , Antioxidantes/análisis , Clorofila/análisis , Clorofila/metabolismo , Glutatión/análisis , Glutatión/metabolismo , Mutación , Oryza/genética , Oryza/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Prolina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Agua/metabolismo
17.
New Phytol ; 179(2): 530-545, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19086295

RESUMEN

G-proteins (guanine nucleotide-binding proteins that usually exhibit GTPase activities) and related signal transduction processes play important roles in mediating plant defense responses; here, a rice (Oryza sativa) cDNA clone, OsGAP1, encoding a GTPase-activating protein (GAP) that also contains a protein kinase C conserved region 2 (C2) domain is reported. An interacting G-protein partner for the OsGAP1 protein was identified by yeast two-hybrid library screening and confirmed by co-immunoprecipitation; the GTPase-activation activity of OsGAP1 on this interacting G-protein was demonstrated using in vitro assays. OsGAP1 was induced by wounding in rice and the presence of the R locus Xa14 enhances such induction. Gain-of-function tests in transgenic rice and Arabidopsis thaliana showed that constitutive expression of OsGAP1 led to increased resistance to bacterial pathogens in both monocots and dicots.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Clonación Molecular , Proteínas Activadoras de GTPasa/genética , Datos de Secuencia Molecular , Enfermedades de las Plantas , Proteínas de Plantas/genética , Técnicas del Sistema de Dos Híbridos
18.
Sheng Wu Gong Cheng Xue Bao ; 24(3): 368-75, 2008 Mar.
Artículo en Chino | MEDLINE | ID: mdl-18589810

RESUMEN

Phospholipase Ds (PLDs) exist in many plants. PLDs catalyse the hydrolysis of phospholipids (e.g. phosphatidylcholine) in cell membrane into phosphatidic acid (PA) and polar free heads (e.g. choline). Two PLD members from rice, OsPLD3 and OsPLD4, were studied by reverse genetics approaches. The results showed that the promoters of OsPLD3 and OsPLD4 could drive the expression of the reporter gene in various tissues of the rice flower organs at different levels. The expression of both genes was induced by wounding and methyl jasmonate (MeJA), but with different intensity at different time intervals. No prominent phenotypes were observed by RNA interference with the gene-specific artificial miRNAs or over-expression of the target genes in rice plants, implying the functional redundancy among different members of the rice PLD family.


Asunto(s)
Genes de Plantas/genética , Oryza/genética , Fosfolipasa D/genética , Regiones Promotoras Genéticas/genética , Acetatos/farmacología , Secuencia de Bases , Ciclopentanos/farmacología , Flores/genética , Flores/metabolismo , Genes Reporteros/genética , Datos de Secuencia Molecular , Oryza/enzimología , Oxilipinas/farmacología , Fosfolipasa D/metabolismo
19.
Genome ; 51(1): 41-9, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18356938

RESUMEN

An efficient system was developed, and several variables tested, for generating a large-scale insertional-mutagenesis population of rice. The most important feature in this improved Ac/Ds tagging system is that one can conveniently carry out large-scale screening in the field and select transposants at the seedling stage. Rice was transformed with a plasmid that includes a Basta-resistance gene (bar). After the Ds element is excised during transposition, bar becomes adjacent to the ubiquitin promoter, and the rice plant becomes resistant to the herbicide Basta. In principle, one can plant up to one million plants in the field and select those plants that survive after spraying with Basta. To test the utility of this system, 4 Ds starter lines were crossed with 14 different Ac plants, and many transposants were successfully identified after planting 134,285 F2 plants in the field. Over 2,800 of these transposants were randomly chosen for PCR analysis, and the results fully confirmed the reliability of the field screening procedure.


Asunto(s)
Biblioteca de Genes , Mutagénesis Insercional , Oryza/genética , Aminobutiratos/farmacología , Cruzamientos Genéticos , Resistencia a Medicamentos , Herbicidas/farmacología , Secuencias Repetitivas Esparcidas , Oryza/anatomía & histología , Oryza/efectos de los fármacos , Plantas Modificadas Genéticamente/anatomía & histología , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Reacción en Cadena de la Polimerasa , Lugares Marcados de Secuencia , Transformación Genética , beta-Galactosidasa/análisis
20.
Sheng Wu Gong Cheng Xue Bao ; 24(12): 2027-33, 2008 Dec.
Artículo en Chino | MEDLINE | ID: mdl-19306571

RESUMEN

Gene expression in rice roots under nutritional stress was studied using micro array techniques. The results showed that when re-supplied with sufficient amounts of nutrition after nutrition stress, the expression of OsPra2 (a small G protein which is homologous with Pea Pra2 protein) decreased in the plants root tissue. The cDNA sequence of the OsPra2 gene and its promoter, which is about 1 kb upstream of the translation origin point, was obtained using RT-PCR and PCR approaches. The OsPra2 protein contains four conserved GTP/GDP binding domains and specific domain of Rab small G protein family. The expression of OsPra2 and GST fusion protein in onion epidermal cells showed that OsPra2 protein was localized in the membrane and nucleus of the cell. The fusion expression of OsPra2 promoter and GUS reporter gene in transgenic rice suggested that the OsPra2 promoter allowed GUS expression in coleoptiles and roots. Compared with wild type rice, OsPra2 over expressed transgenic rice showed an obvious dwarf phenotype which resembles the BR deficient rice.


Asunto(s)
Oryza/genética , Proteínas de Plantas/genética , Proteínas de Unión al GTP rab/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Datos de Secuencia Molecular , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Homología de Secuencia de Aminoácido , Proteínas de Unión al GTP rab/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...