Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38475439

RESUMEN

Banana peel (BP) is the primary by-product generated during banana processing which causes numerous environmental issues. This study examines the physical attributes, proximate analysis, glycoarray profiling, antioxidant abilities, and prebiotic activity of BP. The analysis demonstrated that carbohydrates constituted the primary components of BP and the glycoarray profiling indicated that BP contains multiple pectin and hemicellulose structures. BP also contained phenolic compounds, including (+)-catechin and gallic acid, flavonoid compounds, and antioxidant activities. BP demonstrated prebiotic effects by promoting the proliferation of advantageous gut bacteria while inhibiting the growth of harmful bacteria. The prebiotic index scores demonstrated that BP exhibited a greater capacity to promote the growth of beneficial bacteria in comparison to regular sugar. The study demonstrated the potential of the BP as a valuable source of dietary fibre, bioactive compounds, and prebiotics. These components have beneficial characteristics and can be utilised in the production of food, feed additives, and functional food.

2.
Plants (Basel) ; 12(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37836168

RESUMEN

Roses are popular ornamental plants all over the world. Rosa damascena Mill., also known as the damask rose, is a well-known scented rose species cultivated to produce essential oil. The essential oils obtained are high in volatile organic compounds (VOCs), which are in demand across the pharmaceutical, food, perfume, and cosmetic industries. Citronellol, nonadecane, heneicosane, caryophyllene, geraniol, nerol, linalool, and phenyl ethyl acetate are the most important components of the rose essential oil. Abiotic factors, including as environmental stress and stress generated by agricultural practises, frequently exert a selective impact on particular floral characteristics, hence influencing the overall quality and quantity of rose products. Additionally, it has been observed that the existence of stress exerts a notable impact on the chemical composition and abundance of aromatic compounds present in roses. Therefore, understanding the factors that affect the biosynthesis of VOCs, especially those representing the aroma and scent of rose, as a response to abiotic stress is important. This review provides comprehensive information on plant taxonomy, an overview of the volatolomics involving aromatic profiles, and describes the influence of abiotic stresses on the biosynthesis of the VOCs in damask rose.

3.
Front Nutr ; 10: 1142784, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37560057

RESUMEN

Garlic, a common culinary spice, is cultivated and used around the globe. Consumption of garlic and its supplements reduces the risk of diabetes and cardiovascular disease and boosts the immune system with antibacterial, antifungal, anti-aging, and anti-cancer properties. Diallyl sulfide, diallyl disulfide, triallyl trisulfide, phenolics, flavonoids, and others are the most commercially recognized active ingredients in garlic and its products. In recent years, global demand for medicinal or functional garlic has surged, introducing several products such as garlic oil, aged garlic, black garlic, and inulin into the market. Garlic processing has been demonstrated to directly impact the availability of bioactive ingredients and the functionality of products. Depending on the anticipated functional qualities, it is also recommended that one or a combination of processing techniques be deemed desirable over the others. This work describes the steps involved in processing fresh garlic into products and their physicochemical alterations during processing. Their nutritional, phytochemical, and functional properties are also reviewed. Considering the high demand for functional food, this review has been compiled to provide guidance for food producers on the industrial utilization and suitability of garlic for new product development.

4.
Plant Signal Behav ; 18(1): 2227440, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37366146

RESUMEN

Microbial volatile organic compounds (MVOCs) are a diverse group of volatile organic compounds that microorganisms may produce and release into the environment. These compounds have both positive and negative effects on plants, as they have been shown to be effective at mitigating stresses and functioning as immune stimulants. Furthermore, MVOCs modulate plant growth and systemic plant resistance, while also serving as attractants or repellents for insects and other stressors that pose threats to plants. Considering the economic value of strawberries as one of the most popular and consumed fruits worldwide, harnessing the benefits of MVOCs becomes particularly significant. MVOCs offer cost-effective and efficient solutions for disease control and pest management in horticultural production, as they can be utilized at low concentrations. This paper provides a comprehensive review of the current knowledge on microorganisms that contribute to the production of beneficial volatile organic compounds for enhancing disease resistance in fruit products, with a specific emphasis on broad horticultural production. The review also identifies research gaps and highlights the functions of MVOCs in horticulture, along with the different types of MVOCs that impact plant disease resistance in strawberry production. By offering a novel perspective on the application and utilization of volatile organic compounds in sustainable horticulture, this review presents an innovative approach to maximizing the efficiency of horticultural production through the use of natural products.


Asunto(s)
Compuestos Orgánicos Volátiles , Resistencia a la Enfermedad , Desarrollo de la Planta , Horticultura
5.
Molecules ; 27(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35630777

RESUMEN

Phytocannabinoids are isoprenylated resorcinyl polyketides produced mostly in glandular trichomes of Cannabis sativa L. These discoveries led to the identification of cannabinoid receptors, which modulate psychotropic and pharmacological reactions and are found primarily in the human central nervous system. As a result of the biogenetic process, aliphatic ketide phytocannabinoids are exclusively found in the cannabis species and have a limited natural distribution, whereas phenethyl-type phytocannabinoids are present in higher plants, liverworts, and fungi. The development of cannabinomics has uncovered evidence of new sources containing various phytocannabinoid derivatives. Phytocannabinoids have been isolated as artifacts from their carboxylated forms (pre-cannabinoids or acidic cannabinoids) from plant sources. In this review, the overview of the phytocannabinoid biosynthesis is presented. Different non-cannabis plant sources are described either from those belonging to the angiosperm species and bryophytes, together with their metabolomic structures. Lastly, we discuss the legal framework for the ingestion of these biological materials which currently receive the attention as a legal high.


Asunto(s)
Cannabinoides , Cannabis , Alucinógenos , Agonistas de Receptores de Cannabinoides , Cannabinoides/química , Cannabis/química , Humanos , Espectrometría de Masas , Metabolómica
6.
Front Nutr ; 7: 558579, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33365324

RESUMEN

This research reports the characterization of bee pollen of Apis andreniformis colonies on the basis of morphology, proximate composition, the amino acid, and nutritive patterns in relation with their honey. The pollen gains of the sampling colonies revealed variations in their structure, symmetry, and sculpture. The exile surfaces of the pollens showed psilate, scabrate, clavate, and echinate types of morphology. Total amino acid content of black dwarf honeybee collected pollen (150 mg/g) was found significantly higher than that of honey (15 mg/g) from the same colony. Threonine, phenylalanine, and leucine were among the highest essential amino acid types found in the analyzed pollen and honey samples. The proline content in both products was found the lowest comparing to other amino acid types. The moisture content of the honey samples were found to exceed the limit as prescribed by Codex Alimentarius Commission (<20%). The ash content of the analyzed samples was mostly within the limits (<0.6%) prescribed by international norms. The fat content of the pollens varied from 5.01 to 5.05%, and the honey showed zero fat content. The carbohydrate content in the honey samples was found to differ significantly from each other with a maximum content (73.16%), and the lowest carbohydrate content was 67.80%. The pollen and honey samples were found to have positive effect on in vitro digestibility of proteins.

7.
Food Sci Nutr ; 8(8): 4534-4545, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32884733

RESUMEN

Raw materials used for black garlic (BG) processing were collected from the major garlic production areas in Northern Thailand. Five of those were identified as of Thai origin (accession G1-G5), and accession G6 was of the Chinese variety. They were initially analyzed for varietal differences using morphological characteristics and genetic variation. Fresh materials from each accession were dried to the same moisture content (55%-60%) and BG processed at 75°C, 90% relative humidity (RH) for 15 days. Thereafter, physiochemical and chemical profiles were analyzed and compared. The dendrogram from random amplified polymorphic DNA fingerprints grouped G2, G3, G4, and G5 as closely related while G1 and G6 were out-groups. Prior to BG processing, the pH of fresh garlic was approximately 6.3 and decreased to 3.7, thereafter. The contents of chemical properties were independent with genotypes. BG processing improved phenolic, flavonoid, and antioxidant but the content of thiosulfinate was minimized in all BG samples. Overall, result indicated that garlics grown in Northern Thailand were genotypically variable. BG processing altered physical and chemical appearance, and these changes were independent with the genotypes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...