Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Trop ; 244: 106949, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37211153

RESUMEN

Autochthonous leishmaniasis in Thailand has recently been a public health concern due to an increasing number of new clinical cases. Most indigenous cases were diagnosed with Leishmania (Mundinia) martiniquensis, and Leishmania (Mundinia) orientalis. However, some doubts regarding vector misidentification have arisen and need to be elucidated. Accordingly, we aimed to assess the species composition of sand flies and determine the molecular prevalence of trypanosomatids in the transmission area of leishmaniasis in southern Thailand. In the present study, a total of 569 sand flies were caught from the vicinity of a visceral leishmaniasis patient's house in Na Thawi District, Songkhla Province. Of these, 229 parous and gravid females consisted of Sergentomyia khawi, Se. barraudi, Phlebotomus stantoni, Grassomyia indica, and Se. hivernus, accounting for 31.4%, 30.6%, 29.7%, 7.9%, and 0.4%, respectively. However, Se. gemmea, which has previously been proposed as the most abundant species and putative vector of visceral leishmaniasis, was not found in the present study. Based on ITS1-PCR and sequence analysis, two specimens of Gr. indica and Ph. stantoni showed positive amplification of L. martiniquensis and L. donovani complex, respectively, the first one being presumed indigenous and the second one being not. Anuran Trypanosoma was also molecularly detected using SSU rRNA-PCR and ubiquitously found in 16 specimens of four dominant sand fly species except for Se. hivernus. The obtained sequences could be phylogenetically categorized into the two major amphibian clades (An04/Frog1 and An01+An02/Frog2). The existence of the monophyletic subgroup and distinct lineage suggests them as novel Trypanosoma species. The TCS network analysis of these anuran Trypanosoma sequences also revealed high haplotype diversity (Hd = 0.925 ± 0.050), but low nucleotide diversity (π = 0.019 ± 0.009). Furthermore, the living anuran trypanosomes were microscopically demonstrated in a single specimen of Gr. indica, supporting the vectorial capacity. Importantly, our data confirmed the scarcity of Se. gemmea and also uncovered, for the first time, the co-circulation of L. martiniquensis, L. donovani complex, and suspected novel anuran Trypanosoma spp. in phlebotomine sand files, implicating their potential role as vectors of trypanosomatid parasites. Therefore, the novel data from this study would greatly facilitate the comprehension of the complexity of trypanosomatid transmission and the establishment of prevention and control measures for this neglected disease more effectively.


Asunto(s)
Leishmania donovani , Leishmaniasis Visceral , Leishmaniasis , Phlebotomus , Psychodidae , Trypanosoma , Femenino , Animales , Leishmaniasis Visceral/epidemiología , Psychodidae/parasitología , Tailandia , Insectos Vectores/parasitología , Phlebotomus/parasitología
2.
Insects ; 13(10)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36292860

RESUMEN

Five hundred and fifty-nine female biting midges were collected, and seventeen species in six subgenera (Avaritia, Haemophoructus, Hoffmania, Meijerehelea, Remmia, and Trithecoides) and two groups (Clavipalpis and Shortti) were identified. The dominant Culicoides species was C. peregrinus (30.94%), followed by C. subgenus Trithecoides. From blood meal analysis of engorged biting midges, they were found to feed on cows, dogs, pigs, and avians. The majority of blood preferences of biting midges (68%; 49/72) displayed a mixed pattern of host blood DNA (cow and avian). The overall non-engorged biting midge field infectivity rate was 1.44 % (7/487). We detected Leucocytozoon sp. in three Culicoides specimens, one from each species: C. fulvus, C. oxystoma, and C. subgenus Trithecoides. Crithidia sp. was found in two C. peregrinus specimens, and Trypanosoma sp. and P. juxtanucleare were separately found in two C. guttifer. More consideration should be paid to the capacity of biting midges to transmit pathogens such as avian haemosporidian and trypanosomatid parasites. To demonstrate that these biting midges are natural vectors of trypanosomatid parasites, additional research must be conducted with a greater number of biting midges in other endemic regions.

3.
Front Cell Infect Microbiol ; 12: 924007, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782144

RESUMEN

Emerging infectious disease has become the center of attention since the outbreak of COVID-19. For the coronavirus, bats are suspected to be the origin of the pandemic. Consequently, the spotlight has fallen on zoonotic diseases, and the focus now expands to organisms other than viruses. Microsporidia is a single-cell organism that can infect a wide range of hosts such as insects, mammals, and humans. Its pathogenicity differs among species, and host immunological status plays an important role in infectivity and disease severity. Disseminated disease from microsporidiosis can be fatal, especially among patients with a defective immune system. Recently, there were two Trachipleistophora hominis, a microsporidia species which can survive in insects, case reports in Thailand, one patient had disseminated microsporidiosis. This review gathered data of disseminated microsporidiosis and T. hominis infections in humans covering the biological and clinical aspects. There was a total of 22 cases of disseminated microsporidiosis reports worldwide. Ten microsporidia species were identified. Maximum likelihood tree results showed some possible correlations with zoonotic transmissions. For T. hominis, there are currently eight case reports in humans, seven of which had Human Immunodeficiency Virus (HIV) infection. It is observed that risks are higher for the immunocompromised to acquire such infections, however, future studies should look into the entire life cycle, to identify the route of transmission and establish preventive measures, especially among the high-risk groups.


Asunto(s)
COVID-19 , Microsporidios , Microsporidiosis , Animales , Humanos , Huésped Inmunocomprometido , Mamíferos , Microsporidiosis/epidemiología , Zoonosis/epidemiología
4.
Pathogens ; 11(2)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35215190

RESUMEN

Over the years, cases of autochthonous leishmaniasis have been dramatically increasing in Thailand. Recently, several publications have claimed certain species of the phlebotomine sand flies and biting midges potentially serve as natural vectors of Leishmania and Trypanosoma species in this country. However, more information regarding the vector-parasite relationships, as well as their natural reservoirs in the country, still needs to be explored. Herein, we hypothesized that synanthropic reptiles in the leishmaniasis-affected area might be a natural reservoir for these parasites. In this present study, a total of nineteen flat-tailed house geckos were collected from the house of a leishmaniasis patient in Songkhla province, southern Thailand, and then dissected for their visceral organs for parasite detection. Small subunit ribosomal RNA (SSU rRNA) gene and internal transcribed spacer 1 (ITS-1)-specific amplifications were conducted to verify the presence of Trypanosoma and Leishmania parasites, respectively. Only Trypanosoma DNA was screened positive in eight gecko individuals by SSU rRNA-PCR in at least one visceral organ (4, 4, and 6 of the heart, liver, and spleen, respectively) and phylogenetically related to the anuran Trypanosoma spp. (An04/Frog1 clade) previously detected in three Asian sand fly species (Phlebotomus kazeruni, Sergentomyia indica, and Se. khawi). Hence, our data indicate the first detection of anuran Trypanosoma sp. in the flat-tailed house geckos from southern Thailand. Essentially, it can be inferred that there is no evidence for the flat-tailed house gecko (Hemidactylus platyurus) as a natural reservoir of human pathogenic trypanosomatids in the leishmaniasis-affected area of southern Thailand.

5.
PLoS Negl Trop Dis ; 15(12): e0010014, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34910720

RESUMEN

Biting midges of genus Culicoides (Diptera: Ceratopogonidae) are the vectors of several pathogenic arboviruses and parasites of humans and animals. Several reports have suggested that biting midges might be a potential vector of Leishmania parasites. In this study, we screened for Leishmania and Trypanosoma DNA in biting midges collected from near the home of a leishmaniasis patient in Lamphun province, northern Thailand by using UV-CDC light traps. The identification of biting midge species was based on morphological characters and confirmed using the Cytochrome C oxidase subunit I (COI) gene. The detection of Leishmania and Trypanosoma DNA was performed by amplifying the internal transcribed spacer 1 (ITS1) and small subunit ribosomal RNA (SSU rRNA) genes, respectively. All the amplified PCR amplicons were cloned and sequenced. The collected 223 biting midges belonged to seven species (Culicoides mahasarakhamense, C. guttifer, C. innoxius, C. sumatrae, C. huffi, C. oxystoma, and C. palpifer). The dominant species found in this study was C. mahasarakhamense (47.53%). Leishmania martiniquensis DNA was detected in three samples of 106 specimens of C. mahasarakhamense tested indicating a field infection rate of 2.83%, which is comparable to reported rates in local phlebotomines. Moreover, we also detected Trypanosoma sp. DNA in one sample of C. huffi. To our knowledge, this is the first molecular detection of L. martiniquensis in C. mahasarakhamense as well as the first detection of avian Trypanosoma in C. huffi. Blood meal analysis of engorged specimens of C. mahasarakhamense, C. guttifer, and C. huffi revealed that all specimens had fed on avian, however, further studies of the host ranges of Culicoides are needed to gain a better insight of potential vectors of emerging leishmaniasis. Clarification of the vectors of these parasites is also important to provide tools to establish effective disease prevention and control programs in Thailand.


Asunto(s)
Ceratopogonidae/parasitología , Insectos Vectores/parasitología , Leishmania/genética , Trypanosoma/genética , Animales , Ceratopogonidae/anatomía & histología , Ceratopogonidae/clasificación , ADN Protozoario/genética , Femenino , Especificidad del Huésped , Humanos , Leishmania/aislamiento & purificación , Leishmania/patogenicidad , Técnicas de Amplificación de Ácido Nucleico , Tailandia , Trypanosoma/aislamiento & purificación , Trypanosoma/patogenicidad
6.
PLoS One ; 16(9): e0257024, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34492093

RESUMEN

BACKGROUND: Pediculus humanus capitis or head louse is an obligate ectoparasite and its infestation remains a major public health issue worldwide. Molecular analysis divides head lice into six clades and intra-clade genetic differences have been identified. Several hypotheses have been formulated to elucidate the discrepancies of the variety of head lice among different regions of the world. It is currently concluded that head lice distribution might be associated with human migration history. This study aims to investigate genetic data of human head lice in Thailand. We believe that the analysis could help establish the correlation between local and global head lice populations. METHOD: We investigated mitochondrial cytochrome b (cytb) gene of the collected 214 head lice to evaluate genetic diversity from 15 provinces among 6 regions of Thailand. The head lice genes were added to the global pool for the phylogenetic tree, Bayesian tree, Skyline plot, and median joining network construction. The biodiversity, neutrality tests, and population genetic differentiation among the 6 Thailand geographic regions were analyzed by DNAsp version 6. RESULTS: The phylogenetic tree analysis of 214 collected head lice are of clade A and clade C accounting for roughly 65% and 35% respectively. The Bayesian tree revealed a correlation of clade diversification and ancient human dispersal timeline. In Thailand, clade A is widespread in the country. Clade C is confined to only the Central, Southern, and Northeastern regions. We identified 50 novel haplotypes. Statistical analysis showed congruent results between genetic differentiation and population migration especially with South Asia. CONCLUSIONS: Pediculosis remains problematic among children in the rural areas in Thailand. Cytb gene analysis of human head lice illustrated clade distribution and intra-clade diversity of different areas. Our study reported novel haplotypes of head lice in Thailand. Moreover, the statistic calculation provided a better understanding of their relationship with human, as an obligate human parasite and might help provide a better insight into the history of human population migration. Determination of the correlation between phylogenetic data and pediculicide resistance gene as well as residing bacteria are of interest for future studies.


Asunto(s)
Citocromos b/genética , Infestaciones Ectoparasitarias/genética , Infestaciones por Piojos/genética , Pediculus/genética , Animales , Niño , Infestaciones Ectoparasitarias/epidemiología , Infestaciones Ectoparasitarias/parasitología , Femenino , Variación Genética/genética , Haplotipos/genética , Migración Humana , Humanos , Infestaciones por Piojos/epidemiología , Infestaciones por Piojos/parasitología , Masculino , Mitocondrias/genética , Pediculus/clasificación , Pediculus/patogenicidad , Filogenia , Tailandia/epidemiología
7.
PLoS Negl Trop Dis ; 14(12): e0008955, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33326440

RESUMEN

Human head lice are blood-sucking insects causing an infestation in humans called pediculosis capitis. The infestation is more prevalent in the school-aged population. Scalp itching, a common presenting symptom, results in scratching and sleep disturbance. The condition can lead to social stigmatization which can lead to loss of self-esteem. Currently, the mainstay of treatment for pediculosis is chemical insecticides such as permethrin. The extended use of permethrin worldwide leads to growing pediculicide resistance. The aim of this study is to demonstrate the presence of the knockdown resistance (kdr) mutation in head lice populations from six different localities of Thailand. A total of 260 head lice samples in this study were collected from 15 provinces in the 6 regions of Thailand. Polymerase chain reaction (PCR) was used to amplify the α subunit of voltage-sensitive sodium channel (VSSC) gene, kdr mutation (C→T substitution). Restriction fragment length polymorphism (RFLP) patterns and sequencing were used to identify the kdr T917I mutation and demonstrated three genotypic forms including homozygous susceptible (SS), heterozygous genotype (RS), and homozygous resistant (RR). Of 260 samples from this study, 156 (60.00%) were SS, 58 (22.31%) were RS, and 46 (17.69%) were RR. The overall frequency of the kdr T917I mutation was 0.31. Genotypes frequencies determination using the exact test of Hardy-Weinberg equilibrium found that northern, central, northeastern, southern, and western region of Thailand differed from expectation. The five aforementioned localities had positive inbreeding coefficient value (Fis > 0) which indicated an excess of homozygotes. The nucleotide and amino acid sequences of RS and RR showed T917I and L920F point mutations. In conclusion, this is the first study detecting permethrin resistance among human head lice from Thailand. PCR-RFLP is an easy technique to demonstrate the kdr mutation in head louse. The data obtained from this study would increase awareness of increasing of the kdr mutation in head louse in Thailand.


Asunto(s)
Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Infestaciones por Piojos/parasitología , Pediculus/genética , Permetrina/farmacología , Sustitución de Aminoácidos , Animales , Niño , Femenino , Genotipo , Humanos , Infestaciones por Piojos/epidemiología , Masculino , Mutación Missense , Pediculus/efectos de los fármacos , Mutación Puntual , Prevalencia , Instituciones Académicas , Estudiantes , Tailandia/epidemiología
8.
Insects ; 11(5)2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32455799

RESUMEN

Termites of the genus Macrotermes (Termitidae: Macrotermitinae) are serious agricultural and structural pests, which also play vital roles in ecosystem functioning, and are crucial for the maintenance of tropical biodiversity. They are widely distributed, mainly in Southeast Asian countries; however, the parasitism of termites has been little researched. This research was conducted to identify and study the ecology of the parasitoids of termites at Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand. Macrotermes gilvus (Hagen) soldier termites were collected from 25 mounds. In four of the 25 mounds, scuttle fly larvae were found inside the bodies of the soldier termites, and adult flies were found in all of the mounds. Some of the larvae successfully developed to pupae under laboratory conditions. The percentages of parasitized major soldier termites collected from the four mounds were 43.79%, 47.43%, 0.86%, and 3.49%, respectively, and the percentages of parasitized minor soldier termites were 0.64%, 0.00%, 0.21%, and 0.00%, respectively. Larvae, pupae, and adult flies were identified using both morphological and molecular identifications. Molecular identification used the partial nucleotide sequences of the mitochondrial cytochrome c oxidase I (COI) gene. The results of both identification methods identified the parasitic Diptera as the scuttle fly, Megaselia scalaris (Loew) (Diptera: Phoridae). The phylogenetic analysis of the 23 scuttle fly samples (11 larvae, 7 pupae, and 5 adults) classified them into two clades: (1) Those closely related to a previous report in India; (2) those related to M. scalaris found in Asia and Africa. This is the first discovery of M. scalaris in M. gilvus. Further investgation into termite parasitism by M. scalaris and its possible use in the biological control of termites is needed.

9.
J Parasitol Res ; 2020: 9520326, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32328299

RESUMEN

Genetic diversity of Plasmodium parasite has significantly related to malaria control and vaccine development. The P. falciparum merozoite surface protein 1 (Pfmsp1) gene is a commonly used molecular marker to differentiate genetic diversity. This study is aimed at developing a nested PCR-Heteroduplex Mobility Assay (nPCR-HMA) for determination of the block 2 of the Pfmsp1 gene. The MAD20 family allele of P. falciparum was used as a control for optimization of the annealing and polyacrylamide gel electrophoresis conditions. In order to evaluate the developed nPCR-HMA, 8 clinical P. falciparum isolates were examined for allelic variants. The results revealed 9 allelic variants. Our study indicated that the successful nPCR-HMA with good precision and accuracy offers a more rapid, efficient, and cheap method for large-scale molecular epidemiological studies as compared to nucleotide sequencing.

10.
Insects ; 10(8)2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31382501

RESUMEN

Phlebotomine sand flies are tiny, hairy, blood-sucking nematoceran insects that feed on a wide range of hosts. They are known as a principal vector of parasites, responsible for human and animal leishmaniasis worldwide. In Thailand, human autochthonous leishmaniasis and trypanosomiasis have been reported. However, information on the vectors for Leishmania and Trypanosoma in the country is still limited. Therefore, this study aims to detect Leishmania and Trypanosoma DNA in field-caught sand flies from endemic areas (Songkhla and Phatthalung Provinces) and non-endemic area (Chumphon Province) of leishmaniasis. A total of 439 sand flies (220 females and 219 males) were collected. Head and genitalia dissection of female sandflies were done for morphology identification, and the remaining parts of those sand flies were then used for the detection of Leishmania and Trypanosoma parasites. The DNA was extracted from individual female sand flies. Polymerase chain reaction (PCR) anneal, specific to the ITS1 and SSU rRNA gene regions, was used to detect Leishmania and Trypanosoma DNA, respectively. The positive PCR products were cloned and sequenced. The results showed that the female sand fly species in this study consisted of Sergentomyia khawi (35.9%); Se. anodontis (23.6%); Phlebotomus betisi (18.6%); Ph. kiangsuensis (9.5%); Ph. asperulus (6.4%); Se. barraudi (2.3%); 0.9% of each Se. indica, Ph. stantoni, and Ph. major major; and 0.5% of each Se. sylvatica and Ph. mascomai. The PCR and sequence analysis were able to detect Leishmania and Trypanosoma DNA in sand fly samples, which were identified as L. martiniquensis, 1/220 (0.45%) in Se. khawi, 3/220 (1.36%) of T. noyesi in Se. anodontis, and Ph. asperulus. Fourteen (6.36%) of the unidentified trypanosome species in Se. khawi, Se. indica, Se. anodontis, Ph. asperulus, and Ph. betisi were found in all of the areas of this study. Interestingly, we found a 1/220 (0.45%) co-infection sample of L. martiniquensis and Trypanosoma in Se. khawi from Songkhla Province. These data indicate that several species of sand flies might be potential vectors of Leishmania and Trypanosoma parasites in southern Thailand. However, more extensive study for potential vectors using a larger number of sand flies should be conducted to prove whether these sand flies can be natural vectors of leishmaniasis and trypanosomiasis in both humans and animals. In addition, our study could be useful for the future study of infection prevention, including effective vector control for leishmaniasis and trypanosomiasis in Thailand.

11.
Insects ; 10(6)2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31142009

RESUMEN

Cattle lice are obligatory blood-sucking parasites, which is the cause of animal health problems worldwide. Recently, several studies have revealed that pathogenic bacteria could be found in cattle lice, and it can act as a potential vector for transmitting louse-borne diseases. However, the cattle lice and their pathogenic bacteria in Thailand have never been evaluated. In the present study, we aim to determine the presence of bacterial pathogens in cattle lice collected from three localities of Thailand. Total genomic DNA was extracted from 109 cattle louse samples and the Polymerase Chain Reaction (PCR) of 18S rRNA was developed to identify the cattle louse. Moreover, PCR was used for screening Bartonella spp., Acinetobacter spp., and Rickettsia spp. in cattle louse samples. The positive PCR products were cloned and sequenced. The phylogenetic tree based on the partial 18S rRNA sequences demonstrated that cattle lice species in this study are classified into two groups according to reference sequences; Haematopinus quadripertusus and Haematopinus spp. closely related to H. tuberculatus. The pathogen detection revealed that Bartonella spp. DNA of gltA and rpoB were detected in 25 of 109 samples (22.93%) both egg and adult stages, whereas Acinetobacter spp. and Rickettsia spp. were not detected in all cattle lice DNA samples. The gltA and rpoB sequences showed that the Bartonella spp. DNA was found in both H. quadripertusus and Haematopinus spp. closely related to H. tuberculatus. This study is the first report of the Bartonella spp. detected in cattle lice from Thailand. The finding obtained from this study could be used to determine whether the cattle lice can serve as a potential vector to transmit these pathogenic bacteria among cattle and may affect animal to human health.

12.
Parasit Vectors ; 8: 127, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25889008

RESUMEN

BACKGROUND: Head louse infestation, which is caused by Pediculus humanus capitis, occurs throughout the world. With the advent of molecular techniques, head lice have been classified into three clades. Recent reports have demonstrated that pathogenic organisms could be found in head lice. Head lice and their pathogenic bacteria in Thailand have never been investigated. In this study, we determined the genetic diversity of head lice collected from various areas of Thailand and demonstrated the presence of Acinetobacter spp. in head lice. METHODS: Total DNA was extracted from 275 head louse samples that were collected from several geographic regions of Thailand. PCR was used to amplify the head louse COI gene and for detection of Bartonella spp. and Acinetobacter spp. The amplified PCR amplicons were cloned and sequenced. The DNA sequences were analyzed via the neighbor-joining method using Kimura's 2-parameter model. RESULTS: The phylogenetic tree based on the COI gene revealed that head lice in Thailand are clearly classified into two clades (A and C). Bartonella spp. was not detected in all the samples, whereas Acinetobacter spp. was detected in 10 samples (3.62%), which consisted of A. baumannii (1.45%), A. radioresistens (1.45%), and A. schindleri (0.72%). The relationship of Acinetobacter spp. and the head lice clades showed that Acinetobacter spp. was found in clade A and C. CONCLUSIONS: Head lice in Thailand are classified into clade A and B based on the COI gene sequences. Pathogenic Acinetobacter spp. was detected in both clades. The data obtained from the study might assist in the development of effective strategies for head lice control in the future. Detection of pathogenic bacteria in head lice could raise awareness of head lice as a source of nosocomial bacterial infections.


Asunto(s)
Acinetobacter/fisiología , Variación Genética , Pediculus/fisiología , Acinetobacter/genética , Animales , Secuencia de Bases , Infección Hospitalaria , Femenino , Geografía , Humanos , Pediculus/genética , Filogenia , Encuestas y Cuestionarios , Tailandia/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...