Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sep Purif Technol ; 2482020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32655283

RESUMEN

Superparamagnetic iron oxide nanoparticles (SPIONs) are employed in multiple applications, especially within medical and chemical engineering fields. However, their magnetic separation is very challenging as the magnetophoretic motion is hindered by thermal energy and viscous drag. Recent studies have addressed the recovery of SPIONs by a combination of cooperative magnetophoresis and sedimentation. Nevertheless, the effect of horizontal, high fields and gradients on the vertical sedimentation of SPIONs has not been described. In this work, we report, for the first time, the magnetically facilitated sedimentation of 5 nm particles by applying fields and gradients perpendicular to gravity. The magnetic field was generated by quadrupole magnetic sorters and the process was measured with time by tracking the concentration along the length of a channel contacting the 5 nm SPIONs within the quadrupole field. Our experimental data suggest that aggregates of 60-90 particles are formed in the system; thus, particle agglomeration by dipole-dipole interactions was promoted, and these clusters settled down as a result of gravitational forces. Multiple variables and parameters were evaluated, including the initial SPION concentration, the temperature, the magnetic field and gradient and operation time. It was found that the process was improved by decreasing the initial concentration and the temperature, but the magnitude of the magnetic field and gradient did not significantly affect the sedimentation. Finally, the separation process was rapid, with the systems reaching the equilibrium in approximately 20 minutes, which is a significant advantage in comparison to other systems that require longer times and larger particle sizes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...