Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 13(4): e0120923, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38456698

RESUMEN

We isolated and characterized two lytic bacteriophages against Staphylococcus aureus named TANUVAS_MVC-VPHSA1 and TANUVAS_MVC-VPHSA2, with the aim of investigating their genomic and structural features. The bacteriophages belong to the Caudoviricetes, and their genomes have sizes of 50,505 and 50,516 base pairs with a GC content of 41.4%.

2.
Foodborne Pathog Dis ; 20(12): 570-578, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37722022

RESUMEN

Milk is an important source of food, and it is also a nutrient-rich medium, which can harbor multiple microorganisms. Staphylococcus aureus is an important foodborne pathogen in food-producing animals, and there have been many reports on its infection and antimicrobial resistance (AMR), which has significant global public health concerns. This study was designed to isolate, characterize, and analyze the AMR pattern of S. aureus from milk samples collected in Chennai, India. A total of 259 raw milk samples from 3 groups: dairy farms, local vendors, and retail outlets were analyzed, and it was found that 34% (89/259) were positive for S. aureus. Positive isolates were further characterized by pulsed-field gel electrophoresis and isolates recovered from different sources, study areas, and locations showed high genetic diversity with no similarity. The presence of AMR has been further assessed by phenotypic methods as per CLSI-M100 performance standards, and all the isolates were susceptible to ampicillin/sulbactam, mupirocin, and tylosin. Additionally, all of the isolates were resistant to ampicillin. There were 28 isolates categorized as multidrug-resistant, which showed resistance to more than 2-3 classes of antimicrobials. This is the first report of inducible clindamycin resistance and mupirocin sensitivity pattern from S. aureus isolates recovered from milk. This study established the occurrence varied with genetic diversity in the isolates prevalent in the study area and divergence pattern of AMR S. aureus. The AMR in these isolates and with methicillin-resistant S. aureus could pose a serious threat to food safety and economic implications.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Staphylococcus aureus/genética , Antibacterianos/farmacología , Leche , Mupirocina , Prevalencia , Pruebas de Sensibilidad Microbiana , India/epidemiología , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/veterinaria , Ampicilina
3.
3 Biotech ; 13(5): 140, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37124985

RESUMEN

Salmonella enterica serovar Kentucky is a frequent cause for clinical infections in human patients. They are isolated and reported with multidrug resistance from the foods of animal origin from various countries. However, studies inferring the colistin resistance are limited. Hence, the current study reports the genetic factors and genomic analysis of the colistin-resistant Salmonella enterica serovar Kentucky strain COL-R for better understanding of its pathogenic potential and phylogenetic relatedness. The S. Kentucky strain COL-R was successfully isolated from chicken meat during ongoing surveillance of food of animal origin. Antimicrobial susceptibility testing revealed resistance to cefoxitin, erythromycin, gentamicin, tetracycline, and most disturbingly to ciprofloxacin and colistin (broth microdilution method). Whole-genome sequence of the COL-R strain was subjected to various in silico analysis to identify the virulence factors, antimicrobial resistance genes, pathogenicity islands and sequence type. The S. Kentucky COL-R strain belonged to sequence type (ST) 198 with a high probability (0.943) of being a human pathogen. Besides presence of integrated phage in the S. Kentucky COL-R genome, 38 genes conferring resistance to various antimicrobials and disinfectants were also identified. Nucleotide Polymorphism analysis indicated triple mutations in gyrA and parC genes conferring fluoroquinolone resistance. Phylogenomic analysis with 31 other S. Kentucky genomes revealed discernible clusters with S. Kentucky COL-R strain latching onto a cluster of high diversity (geographic location and isolation sources). Taken together, our results document the first occurrence of colistin resistance in a fluoroquinolone resistant S. Kentucky COL-R strain isolated from retail chicken and provide crucial information on the genomic features of the strain. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03559-2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA