Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(20): 13817-13835, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38716885

RESUMEN

The reaction of Li[(TAML)CoIII]·3H2O (TAML = tetraamido macrocyclic tetraanionic ligand) with iodosylbenzene at 253 K in acetone in the presence of redox-innocent metal ions (Sc(OTf)3 and Y(OTf)3) or triflic acid affords a blue species 1, which is converted reversibly to a green species 2 upon cooling to 193 K. The electronic structures of 1 and 2 have been determined by combining advanced spectroscopic techniques (X-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), X-ray absorption spectroscopy/extended X-ray absorption fine structure (XAS/EXAFS), and magnetic circular dichroism (MCD)) with ab initio theoretical studies. Complex 1 is best represented as an S = 1/2 [(Sol)(TAML•+)CoIII---OH(LA)]- species (LA = Lewis/Brønsted acid and Sol = solvent), where an S = 1 Co(III) center is antiferromagnetically coupled to S = 1/2 TAML•+, which represents a one-electron oxidized TAML ligand. In contrast, complex 2, also with an S = 1/2 ground state, is found to be multiconfigurational with contributions of both the resonance forms [(H-TAML)CoIV═O(LA)]- and [(H-TAML•+)CoIII═O(LA)]-; H-TAML and H-TAML•+ represent the protonated forms of TAML and TAML•+ ligands, respectively. Thus, the interconversion of 1 and 2 is associated with a LA-associated tautomerization event, whereby H+ shifts from the terminal -OH group to TAML•+ with the concomitant formation of a terminal cobalt-oxo species possessing both singlet (SCo = 0) Co(III) and doublet (SCo = 1/2) Co(IV) characters. The reactivities of 1 and 2 at different temperatures have been investigated in oxygen atom transfer (OAT) and hydrogen atom transfer (HAT) reactions to compare the activation enthalpies and entropies of 1 and 2.

2.
Chemistry ; 30(26): e202303923, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38314903

RESUMEN

A simple, efficient, direct and economical method for the mutual separation of Nd and Pr was developed by the selective dissolution of Nd2O3 from their oxide mixtures in an ionic liquid containing 2-thenoyltrifluoroacetone (HTTA) resulting in an unprecedented separation factor (ßNd/Pr)>500, which is 277 times more than the thus far reported ßNd/Pr values. The proposed mechanism was supported by DFT computations.

3.
Chem Asian J ; 18(20): e202300706, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37655885

RESUMEN

Fragile hemiaminal ether linkages present in the backbone of koneramines (LR OR'), tridentate ligands, bound to copper(II) in stereoselectively self-assembled syn-[Cu(LR OR')X2 ] complexes were transformed into sturdy methylene linkages to make corresponding rac-[Cu(LR H)Cl2 ] complexes by late-stage ligand modification after coordination with the retention of coordination sphere. The generality of stereoselective self-assembly of koneramine complexes is shown by utilising a number of metal ions, anions, amines, alcohols and thiols with complete characterisations.

4.
ACS Omega ; 8(20): 18041-18046, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37251172

RESUMEN

Several uranyl ions strapped with Schiff-base ligands in the presence of redox-innocent metal ions are synthesized, and their reduction potentials are recently estimated. The change in Lewis acidity of the redox-innocent metal ions contributes to ∼60 mV/pKa unit quantified which is intriguing. Upon increasing the Lewis acidity of metal ions, the number of triflate molecules found near the metal ions also increases whose contributions toward the redox potentials remain poorly understood and not quantified until now. Most importantly, to ease the computational burden, triflate anions are often neglected in quantum chemical models due to their larger size and weak coordination to metal ions. Herein, we have quantified and dissected the individual contributions that arise alone from Lewis acid metal ions and from triflate anions with electronic structure calculations. The triflate anion contributions are large, in particular, for divalent and trivalent anions that cannot be neglected. It was presumed to be innocent, but we here show that they can contribute more than 50% to the predicted redox potentials, suggesting that their vital role in the overall reduction processes cannot be neglected.

5.
Chem Commun (Camb) ; 57(100): 13760-13763, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34854853

RESUMEN

DFT and ab initio DLPNO-CCSD(T) calculations predict a stable S = 2 six-coordinate FeIVO species with cucurbit[5]uril (CB[5]) as a ligand ([(CB[5])FeIVO(H2O)]2+(1)). The strong oxidising capability of 1 far exceeds even that of metalloenzymes such as sMMOs in activating inert substrates such as methane, setting the stage for a new generation of biomimetic catalysts.

6.
J Phys Chem B ; 125(29): 7946-7957, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34270242

RESUMEN

Present study reports the interaction of a molecular rotor based BODIPY dye, 8-anilino-BODIPY (ABP), with a versatile macrocyclic molecule, cucurbit[7]uril (CB7), investigated through various techniques such as ground-state absorption, steady-state fluorescence, time-resolve emission, proton NMR, and quantum chemical studies. Although BODIPY dyes have widespread applications due to their intriguing photochemical properties, studies on their noncovalent interactions with different macrocyclic hosts, especially regarding their supramolecularly induced modulations in photophysical properties are very limited. The investigated BODIPY dye, especially its protonated ABPH+ form (pH ∼ 1), shows a large fluorescence enhancement on its interaction with the CB7 host, due to large reduction in the structural flexibility for the bound dye, causing a suppression in its nonradiative de-excitation process in the excited state. Unlike ABPH+, the neutral ABP form (pH ∼ 7) shows considerably weaker interaction with CB7. For ABPH+-CB7 system, observed photophysical results indicate formation of both 1:1 and 1:2 dye-to-host complexes. Plausible geometries of these complexes are obtained from quantum chemical studies which are substantiated nicely from 1H NMR results. The response of the ABPH+-CB7 system toward changing temperature of the solution have also been investigated elaborately to understand the potential of the system in different stimuli-responsive sensor applications.


Asunto(s)
Hidrocarburos Aromáticos con Puentes , Colorantes , Compuestos de Boro , Imidazoles , Espectrometría de Fluorescencia
7.
J Med Chem ; 64(6): 2971-2981, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33711229

RESUMEN

Tumor hypoxia is correlated with increased resistance to chemotherapy and poor overall prognoses across a number of cancer types. We present here a cancer cell-selective and hypoxia-responsive probe (fol-BODIPY) designed on the basis of density functional theory (DFT)-optimized quantum chemical calculations. The fol-BODIPY probe was found to provide a rapid fluorescence "off-on" response to hypoxia relative to controls, which lack the folate or nitro-benzyl moieties. In vitro confocal microscopy and flow cytometry analyses, as well as in vivo near-infrared optical imaging of CT26 solid tumor-bearing mice, provided support for the contention that fol-BODIPY is more readily accepted by folate receptor-positive CT26 cancer cells and provides a superior fluorescence "off-on" signal under hypoxic conditions than the controls. Based on the findings of this study, we propose that fol-BODIPY may serve as a tumor-targeting, hypoxia-activatable probe that allows for direct cancer monitoring both in vitro and in vivo.


Asunto(s)
Colorantes Fluorescentes/metabolismo , Neoplasias/diagnóstico por imagen , Nitrorreductasas/metabolismo , Imagen Óptica/métodos , Hipoxia Tumoral , Animales , Compuestos de Boro/química , Compuestos de Boro/metabolismo , Línea Celular Tumoral , Colorantes Fluorescentes/química , Humanos , Masculino , Ratones Endogámicos BALB C , Microscopía Fluorescente , Modelos Moleculares , Neoplasias/metabolismo
8.
Proteins ; 89(2): 193-206, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32892408

RESUMEN

The iron carrier human serum transferrin (sTf) is known to transport other metals, including some actinides (An). Radiotoxic An are routinely involved in the nuclear fuel cycle and the possibility of their accidental exposure cannot be ruled out. Understanding An interaction with sTf assumes a greater significance for the development of safe and efficacious chelators for their removal from the blood stream. Here we report several 100 ns equilibrium MD simulations of Cm(III)- and Th(IV)-loaded sTf at various protonation states of the protein to explore the possibility of the two An ions release and speciation. The results demonstrate variation in protonation state of dilysine pair (K206 and K296) and the tyrosine (Y188) residue is necessary for the opening of Cm(III)-bound protein and the release of the ion. For the tetravalent thorium, protonation of dilysine pair suffices to cause conformational changes of protein. However, in none of the protonation states, Th(IV) releases from sTf because of its strong electrostatic interaction with D63 in the first shell of the sTf binding cleft. Analysis of hydrogen bond, water bridge, and the evaluation of potential of mean forces of the An ions' release from sTf, substantiate the differential behavior of Cm(III) and Th(IV) at endosomal pH. The results provide insight in the regulation of Cm(III) and Th(IV) bioavailability that may prove useful for effective design of their decorporating agents and as well may help the future design of radiotherapy based on tetravalent ions.


Asunto(s)
Curio/química , Simulación de Dinámica Molecular , Torio/química , Transferrina/química , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Sitios de Unión , Curio/metabolismo , Endosomas/metabolismo , Humanos , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Lisina/química , Lisina/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Protones , Electricidad Estática , Termodinámica , Torio/metabolismo , Transferrina/metabolismo , Tirosina/química , Tirosina/metabolismo
9.
J Biol Inorg Chem ; 25(2): 213-231, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31980924

RESUMEN

The possibility of plutonium (Pu) intake by radiation workers can not be ruled out. Transportation of Pu(IV) to various organs/cells is mainly carried through iron-carrying protein, serum transferrin (sTf), by receptor-mediated endocytosis. Understanding the Pu-sTf interaction is a primary step toward future design of its decorporating agents. We report MD simulations of Pu(IV) binding with sTf and look out for its decorporation at extracellular pH using suitable ligands. MD simulations were carried out in polarizable water environment at different protonation states of the protein. Results unravel the binding motif of Pu(IV): (1) sTf binds the ion in closed conformation at extracellular serum pH with carbonate as synergistic anions, (2) change in protonation state of dilysine (K206 and K296)-trigger and that of the carbonate ion at acidic endosomal pH is found to cause conformational changes of protein, conducive for the heavy ion to be released, although; (3) strong electrostatic interaction between D63 in the binding-cleft and Pu(IV) is found not to ever set free the ion. In an endeavour to decorporate Pu(IV), fragmented molecular form of hydroxypyridinone (HOPO) and catechol (CAM)-based ligands are docked at the binding site (BS) of the protein and metadynamics simulations are conducted. Pu(IV) binding at BS is found to be so strong that it was not detached from BS with the docked HOPO. However, for the identical set of simulation parameters, CAM is found to facilitate dislodging the heavy ion from the protein's binding influence. Differential behaviour of the two chelators is further explored. Fragmented molecular form of hydroxy-pyridinone (HOPO) and catecholamide (CAM) ligands were docked at the binding-site (BS) of human serum transferrin (sTf) to explore their feasibility as plausible Pu(IV) decorporating agents by employing metadynamics method. CAM was found to dislodge Pu from the sTf BS, while HOPO could not.


Asunto(s)
Simulación de Dinámica Molecular , Plutonio/química , Transferrina/química , Sitios de Unión , Humanos , Concentración de Iones de Hidrógeno
10.
Inorg Chem ; 58(23): 16250-16255, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31721568

RESUMEN

A vanadyl ion bound to a cucurbituril (CB) host was reported to oxidize pentane to 2-pentanol in the presence of an oxidizer. DFT calculations suggest that the catalyst selectively reacts with stronger C-H bonds in pentane over weaker C-H bonds in cyclohexane due to size exclusion by the CB host. The active catalyst is an unprecedented vanadium superoxo species bound to the host, and the selectivity toward secondary over the primary C-H bond is the result of a higher degree of charge transfer from the secondary compared to the primary position.

11.
Dalton Trans ; 48(43): 16459, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31616872

RESUMEN

Correction for 'A comparative study of Ir(iii) complexes with pyrazino[2,3-f][1,10]phenanthroline and pyrazino[2,3-f][4,7]phenanthroline ligands in light-emitting electrochemical cells (LECs)' by Iván González et al., Dalton Trans., 2015, 44, 14771-14781.

12.
Dalton Trans ; 48(32): 12279-12286, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31342035

RESUMEN

Tris- and tetrakis-ß-trifluoromethylated gallium (3CF3-Ga, 4CF3-Ga) and aluminum (3CF3-Al, 4CF3-Al) corrole systems were synthesized by a facile "one-pot" approach from the respective tri- and tetra-iodo starting compounds using the FSO2CF2CO2Me reagent. The isolated 5,10,15-(tris-pentafluorophenyl)corrole-based compounds set the groundwork for another important ß-substituent study in inorganic photocatalysis. As seen previously, -CF3 group substitution leads to red shifts in both the absorption and emission spectra compared to their unsubstituted counterparts (X. Zhan, et al., Inorg. Chem., 2019, 58, 6184-6198). All CF3-substituted corrole complexes showed strong fluorescence; 3CF3-Al possessed the highest fluorescence quantum yield (0.71) among these compounds. The photocatalytic production of bromophenol by way of these photosensitizing complexes was studied demonstrating that tris-trifluoromethylation is an important substitution class, especially when Ga3+ is present (experimental TON value in parentheses): 3CF3-Ga (192) > 4CF3-Ga (146) > 3CF3-Al (130) > 4CF3-Al (56) > 1-Ga (43) > 1-Al (18). The catalytic performance (turn-over number, TON) for benzylbromide formation (from toluene) was found to be: 3CF3-Ga (225) > 1-Ga (138) > 3CF3-Al (130) > 4CF3-Ga (126) > 1-Al (95) > 4CF3-Al (89); in these trials, benzaldehyde was also detected as a product in which 3CF3-Ga outperforms the other compounds (TON = 109). The tetra-CF3-substituted 4CF3-Ga and 4CF3-Al species exhibit a dramatic formal positive shift of 116 mV and 126 mV per [CF3] group, respectively, compared to the unsubstituted parent species 1-Ga and 1-Al. However, the absorbance values (λabs = 400 nm) of these corrole complexes (all equally concentrated: 4.0 × 10-6 M) were 3CF3-Al (0.23) > 3CF3-Ga (0.22) > 1-Al (0.21) > 1-Ga (0.20) > 4CF3-Al (0.19) > 4CF3-Ga (0.15), which helps rationalize why 3CF3-Ga performs the best among these catalysts. These new photosensitizers were carefully characterized by 1H and 19F NMR spectroscopy to help verify the number and position (symmetry) of the CF3 groups; 3CF3-Ga and 3I-Al were structurally characterized. Distortions in the corrole macrocycle imposed by the multiple ß-substitution were quantified.

13.
Chem Rev ; 119(11): 6509-6560, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31066549

RESUMEN

Until recently, computational tools were mainly used to explain chemical reactions after experimental results were obtained. With the rapid development of software and hardware technologies to make computational modeling tools more reliable, they can now provide valuable insights and even become predictive. In this review, we highlighted several studies involving computational predictions of unexpected reactivities or providing mechanistic insights for organic and organometallic reactions that led to improved experimental results. Key to these successful applications is an integration between theory and experiment that allows for incorporation of empirical knowledge with precise computed values. Computer modeling of chemical reactions is already a standard tool that is being embraced by an ever increasing group of researchers, and it is clear that its utility in predictive reaction design will increase further in the near future.

14.
Inorg Chem ; 58(9): 6184-6198, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31002247

RESUMEN

An eight-member series of CF3-substituted difluorophosphorus corroles was prepared for establishing a structure-activity profile of these high-potential photosensitizers. It consisted of preparing all four possible isomers of the monosubstituted corrole and complexes with 2-, 3-, 4-, and 5-CF3 groups on the macrocycle's periphery. The synthetic pathway to these CF3-substituted derivatives, beginning with (tpfc)PF2, involves two different initial routes: (i) direct electrophilic CF3 incorporation using FSO2CF2CO2Me and copper iodide, or (ii) bromination to achieve the 2,3,8,17,18-pentabrominated compound using excess bromine in methanol. Crystallographic investigations revealed that distortion of the original planar macrocycle is evident even in the monosubstituted case and that it becomes truly severe for the penta-CF3-substituted derivative 5. There is a shift in redox potentials of about 193 mV per -CF3 group, which decreases to only 120 mV for the fifth one in 5. Differences in the electronic spectra suggest that the Gouterman four orbital model decreases in relevance upon gradual -CF3 substitution, a conclusion that was corroborated by DFT calculations. The very significant energy lowering of the frontier orbitals suggested that photoexcitation should lead to a highly oxidizing photocatalyst. This hypothesis was proven true by finding that the most synthetically accessible CF3-substituted derivative is an excellent catalyst for the photoinduced conversion of bromide to bromine (phenol, toluene, and benzene assay).

15.
Inorg Chem ; 58(9): 6257-6267, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31009214

RESUMEN

The reaction of [Ni(COD)2] (COD; cyclooctadiene) in THF with the NNN-pincer ligand bis(imino)pyridyl (L1) reveals a susceptibility to oxidation in an inert atmosphere ([O2] level <0.5 ppm), resulting in a transient Ni:dioxygen adduct. This reactive intermediate abstracts a hydrogen atom from THF and stabilizes an uncommon Ni(III) complex. The complex is crystallographically characterized by a molecular formula of [NiIII(L1··)2-(OH)] (1). Various isotopically labeled experiments (16O/18O) assertively endorse the origin of terminal oxygen based ligand in 1 due to the activation of molecular dioxygen. The presence of proton bound to the terminal oxygen in 1 is well supported by NMR, IR spectroscopy, DFT calculations, and hydrogen atom transfer (HAT) reactions promoted by 1. The observation of shakeup satellite peaks for the primary photoelectron lines of Ni(2p) in the X-ray photoelectron spectroscopy (XPS) unambiguously confirms the paramagnetic signature associated with the distorted square planar nickel ion, which is consistent with the trivalent oxidation state assigned for the nickel ion in 1. The variable temperature magnetic susceptibility data of 1 shows dominant antiferromagnetic interactions exist among the paramagnetic centers, resulting in an overall S = 1/2 ground state. Variable temperature X-band EPR studies performed on 1 show evidence for the S = 1/2 ground state, which is consistent with magnetic data. The unusual g-tensor extracted for the ground state S = 1/2 is analyzed under a strong exchange limit of spin-coupled centers. The electronic structure predicted for 1 is in good agreement with theoretical calculations.

16.
J Phys Chem B ; 123(13): 2729-2744, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30864809

RESUMEN

Human serum transferrin (sTf) can also function as a noniron metal transporter since only 30% of it is typically saturated with a ferric ion. While this function of sTf can be fruitfully utilized for targeted delivery of certain metal therapeutics, it also runs the risk of trafficking the lethal radionuclides into cells. A large number of actinide (An) ions are known to bind to the iron sites of sTf although molecular-level understanding of their binding is unclear. Understanding the radionuclide interaction with sTf is a primary step toward future design of their decorporating agents since irrespective of the means of contamination, the radionuclides are absorbed and transported by blood before depositing into target organs. Here, we report an extensive multiscale modeling approach of two An (curium(III) and thorium(IV)) ions' binding with sTf at serum physiological pH. We find that sTf binds both the heavy ions in a closed conformation with carbonate as synergistic anions and the An-loaded sTf maintains its closed conformation even after 100 ns of equilibrium molecular dynamics (MD) simulations. MD simulations are performed in a polarizable water environment, which also incorporates electronic continuum corrections for ions via charge rescaling. The molecular details of the An coordination and An exchange free energies with iron in the interdomain cleft of the protein are evaluated through a combination of quantum mechanical (QM) and MD studies. In line with reported experimental observations, well-tempered metadynamics results of the ions' binding energetics show that An-sTf complexes are less stable than Fe-sTf. Additionally, curium(III) is found to bind more weakly than thorium(IV). The latter result might suggest relative attenuation of thorium(IV) cytotoxicity when compared with curium(III).


Asunto(s)
Curio/química , Simulación de Dinámica Molecular , Teoría Cuántica , Torio/química , Transferrina/química , Sitios de Unión , Humanos
17.
Phys Chem Chem Phys ; 21(10): 5566-5577, 2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30785454

RESUMEN

Among the varied classes of weak hydrogen bond, the CHO type is one of immense interest as it governs the finer structures of biological and chemical molecules, hence determining their functionalities. In the present work, this weak hydrogen bond has been shown to strongly influence the complexation behaviour of uranyl nitrate [UO2(NO3)2] with diamyl-H-phosphonate (DAHP) and its branched isomer disecamyl-H-phosphonate (DsAHP). The structures of the bare ligands and complexes have been optimized by density functional theory (DFT) calculations. Surprisingly, despite having the same chemical composition the branched UO2(NO3)2·2DsAHP complex shows a remarkably higher stability (by ∼14 kcal mol-1) compared to the UO2(NO3)2·2DAHP complex. Careful inspection of the optimized structures reveals the existence of multiple CHO hydrogen-bonding interactions between the nitrate oxygens or U[double bond, length as m-dash]O oxygens and the α-hydrogens in the alkyl chains of the ligands. Comparatively stronger such bonds are found in the UO2(NO3)2·2DsAHP complex. The binding free energies associated with the complexes are computed and favoured superior binding energetics for the more stable UO2(NO3)2·2DsAHP complex. Calculations involving diisoamyl-H-phosphonate (DiAHP) and its complexes have also been performed. Theoretical predictions are experimentally tested by carrying out the extraction of U(vi) from nitric acid media using these ligands. DAHP, DsAHP and DiAHP are synthesised, characterised by NMR and evaluated for their physicochemical properties viz. viscosity, density and aqueous solubility. It was experimentally discovered that indeed DsAHP complexation with uranyl nitrate is more favoured. H-phosphonates are generically classified as acidic extractants owing to the formation of an enol tautomer at lower acidities, hence complexing the metal ion by proton exchange. Our experiments interestingly reveal a neutral ligand characteristic for DsAHP alone which is generically an acidic extractant. Furthermore, the enol tautomer of H-phosphonates that governs their extraction profiles at low acidities is also explored by DFT and the anomalous pH dependent complexation trend of DsAHP could be successfully explained. The extractions of Pu(iv) and Th(iv) have also been carried out in addition to U(vi). Solvent extraction behaviour of Am(iii) was also studied with all three ligands; the positive binding energies computed for the Am(iii) complexation corroborate with our experimental results on the poor extraction of Am(iii).

18.
J Biol Inorg Chem ; 23(3): 413-423, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29502216

RESUMEN

Bent metallocenes (BM) have anti-tumor properties but they face a serious drug efficacy problem due to poor aqueous solubility and rapid hydrolysis under physiological conditions. These two problems can be fixed by encapsulating them in host molecules such as cyclodextrin (CD), cucurbituril (CB) etc. Experimentally, CD-BM, CB-BM host-guest complexes have been investigated to check the efficiency of the drug delivery and efficiency of the encapsulated drug. CB has been reported to be a better host than CD but the reasons for this has not been figured out. This can be done by finding out the mechanism of binding and the nature of the binding forces in both the inclusion complexes. This is exactly done here by performing a DFT study at BP86/TZP level on CB-BM host-guest systems. For comparison CD-BM with ß-cyclodextrin as host have been studied. Four BMs (Cp2MCl2, M=Ti, V, Nb, Mo) and their corresponding cations (Cp2MCl+, Cp2M2+) are chosen as guests and they are encapsulated into cucurbit-[6]-uril (CB[6]) and cucurbit-[7]-uril(CB[7]) host systems. Computations reveal that CB[7] accommodates well the BMs over CB[6] due to their larger cavity size and also CB[7] is found to be a better host than ß-cyclodextrin. BMs enter vertically rather than horizontally into the CB cavity. The reversible binding of BMs within CB[7] is controlled by various non-bonding interactions and mainly by hydrogen bonding between the portal oxygen atoms and Cp protons as revealed by QTAIM analysis. On the other hand, the interaction between the wall nitrogen atoms in CB[7] and chlorine atoms attached to the metal in BM strengthens the M-Cl bonds that prevents rapid hydrolysis of M-Cl and M-Cp bonds saving the drug. Comparatively, BMs experience less electrostatic attraction and more Pauli repulsion within ß-cyclodextrin cavity and this affects the drug binding with CD. This makes ß-cyclodextrin a less suitable drug carrier for BMs than CBs. Among the four BMs, niobocene binds strongly and titanocene binds weakly with CBs. EDA clearly shows that all the interactions between the guest and host are non-covalent in nature and electrostatic interactions outperform high-repulsion resulting in stable complexes. Cations form stronger complexes than neutral BMs. FMO analysis reveals that neutral BMs are less reactive compared to their cations and complexes are more reactive in CB[6] environment due to excess strain. QTAIM analysis helps to bring out the newer insights in these types of host-guest systems.


Asunto(s)
Portadores de Fármacos/administración & dosificación , Compuestos Macrocíclicos/administración & dosificación , Metalocenos/administración & dosificación , Antineoplásicos/administración & dosificación , Portadores de Fármacos/química , Compuestos Macrocíclicos/química , Metalocenos/química
19.
Dalton Trans ; 47(11): 3745-3754, 2018 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-29443339

RESUMEN

A series of tetrahedral CoII complexes [CoLX2] (X = NCS (1), Cl (2), Br (3) and I (4); L = 9,9-dimethyl-4,5-bis(diphenylphosphino) xanthene) based on a P-donor ligand has been prepared to investigate the influence of terminal ligand field strength on the anisotropy of CoII single-ion magnets. It has been observed that heavier and softer terminal ligands are able to decrease the anisotropy of the tetrahedral CoII centers. Thorough analyses of experimental and theoretical studies show that all complexes have an easy-axis type magnetic anisotropy and slow relaxation behaviors of tetrahedral CoII centers. Detailed ab initio theory studies disclose that the changes in the ligand field strength imposed by the terminal ligands result in modifying the single ion anisotropy (D) of polyhedra 1-4. Furthermore, the isostructural ZnII analogue (5) has been prepared to examine the influence of dipolar interactions between adjacent CoII centres and magnetic dilution experiments were performed.

20.
Dalton Trans ; 47(11): 3841-3850, 2018 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-29450422

RESUMEN

The structural effects of the carbon chain on the extraction of actinides by organo-phosphorus extractants have been examined experimentally and by computation. Branched butyl H-phosphonates and their linear chain isomer, n-butyl H-phosphonate (DBHP), were synthesised and characterised using IR, NMR and GC-MS techniques. Their physical properties viz. viscosity, density and aqueous solubility have been examined. DBHP, Di-iso-butyl H phosphonate (DiBHP) and Di-sec-butyl H phosphonate (DsBHP) were employed for the extraction of uranium and americium ions from nitric acid. 233U (α-tracer) and 241Am (γ-tracer) were employed as representative isotopes for the extraction of U and Am, respectively, and their distribution ratios (D) were obtained as a function of nitric acid concentration (0.01-8 M). Branching of the alkyl chain at the secondary carbon atom showed unexpected neutral extractant behaviour for DsBHP which is generally classified as an acidic extractant. The acid-dependent dual extraction mechanisms for the H-phosphonates have been examined both experimentally and through quantum chemical calculations. This dramatic effect can be partly attributed to the hindrance in the formation of the enol tautomer through the strengthening of the P[double bond, length as m-dash]OH hydrogen bonding in the DsBHP extractant. Density functional theory (DFT) based calculations were carried out to understand the complexation behaviour of actinides with the two extractants. Possible structures and binding affinities of actinides with H-phosphonates have been deduced from electronic structure calculations. Finally, the trends in distribution ratios were additionally explored and correlated with experimental observations for both metal ions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...