Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Med Imaging (Bellingham) ; 10(2): 023502, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36969328

RESUMEN

Purpose: Our purpose is to investigate the timing resolution in edge-on silicon strip detectors for photon-counting spectral computed tomography. Today, the timing for detection of individual x-rays is not measured, but in the future, timing information can be valuable to accurately reconstruct the interactions caused by each primary photon. Approach: We assume a pixel size of 12 × 500 µ m 2 and a detector with double-sided readout with low-noise CMOS electronics for pulse processing for every pixel on each side. Due to the electrode width in relation to the wafer thickness, the induced current signals are largely dominated by charge movement close to the collecting electrodes. By employing double-sided readout electrodes, at least two signals are generated for each interaction. By comparing the timing of the induced current pulses, the time of the interaction can be determined and used to identify interactions that originate from the same incident photon. Using a Monte Carlo simulation of photon interactions in combination with a charge transport model, we evaluate the performance of estimating the time of the interaction for different interaction positions. Results: Our simulations indicate that a time resolution of 1 ns can be achieved with a noise level of 0.5 keV. In a detector with no electronic noise, the corresponding time resolution is ∼ 0.1 ns . Conclusions: Time resolution in edge-on silicon strip CT detectors can potentially be used to increase the signal-to-noise-ratio and energy resolution by helping in identifying Compton scattered photons in the detector.

2.
J Med Imaging (Bellingham) ; 9(1): 013501, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35155716

RESUMEN

Purpose: Compton interactions amount to a significant fraction of the registered counts in a silicon detector. In a Compton interaction, only a part of the photon energy is deposited and a single incident photon can result in multiple counts unless tungsten shielding is used. Deep silicon has proved to be a competitive material for photon-counting CT detectors, but to improve the performance further, one possibility is to use coincidence techniques to identify Compton-scattered photons and reconstruct their incident energies. Approach: In a detector with no tungsten shielding, incident photons can interact through a series of interactions. Based on the position and energy of each interaction, probability-based methods can be used to estimate the incident photon energy. Here, we present a maximum likelihood estimation framework along with an alternative method to estimate the incident photon energy and position in a silicon detector. Results: Assuming one incident photon per time frame, we show that the incident photon energy can be estimated with a mean error of - 0.07 ± 0.03 keV and an RMS error of 3.36 ± 0.02 keV for a realistic case in which we assume a detector with limited energy and spatial resolution. The interaction position was estimated with a mean error of - 2 ± 11 µ m in x direction and 7 ± 11 µ m in y direction. Corresponding RMS errors of 1.09 ± 0.01 and 1.10 ± 0.01 mm were achieved in x and y , respectively. Conclusions: The presented results show the potential of using probability-based methods to improve the performance of silicon detectors for CT.

3.
J Med Imaging (Bellingham) ; 8(6): 063501, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34805448

RESUMEN

Purpose: Spatial resolution for current scintillator-based computed tomography (CT) detectors is limited by the pixel size of about 1 mm. Direct conversion photon-counting detector prototypes with silicon- or cadmium-based detector materials have lately demonstrated spatial resolution equivalent to about 0.3 mm. We propose a development of the deep silicon photon-counting detector which will enable a resolution of 1 µ m , a substantial improvement compared to the state of the art. Approach: With the deep silicon sensor, it is possible to integrate CMOS electronics and reduce the pixel size at the same time as significant on-sensor data processing capability is introduced. A Gaussian curve can then be fitted to the charge cloud created in each interaction.We evaluate the feasibility of measuring the charge cloud shape of Compton interactions for deep silicon to increase the spatial resolution. By combining a Monte Carlo photon simulation with a charge transport model, we study the charge cloud distributions and induced currents as functions of the interaction position. For a simulated deep silicon detector with a pixel size of 12 µ m , we present a method for estimating the interaction position. Results: Using estimations for electronic noise and a lowest threshold of 0.88 keV, we obtain a spatial resolution equivalent to 1.37 µ m in the direction parallel to the silicon wafer and 78.28 µ m in the direction orthogonal to the wafer. Conclusions: We have presented a simulation study of a deep silicon detector with a pixel size of 12 × 500 µ m 2 and a method to estimate the x-ray interaction position with ultra-high resolution. Higher spatial resolution can in general be important to detect smaller details in the image. The very high spatial resolution in one dimension could be a path to a practical implementation of phase contrast imaging in CT.

4.
J Med Imaging (Bellingham) ; 7(5): 053503, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33033734

RESUMEN

Purpose: Photon-counting silicon strip detectors are attracting interest for use in next-generation CT scanners. For CT detectors in a clinical environment, it is desirable to have a low power consumption. However, decreasing the power consumption leads to higher noise. This is particularly detrimental for silicon detectors, which require a low noise floor to obtain a good dose efficiency. The increase in noise can be mitigated using a longer shaping time in the readout electronics. This also results in longer pulses, which requires an increased deadtime, thereby degrading the count-rate performance. However, as the photon flux varies greatly during a typical CT scan, not all projection lines require a high count-rate capability. We propose adjusting the shaping time to counteract the increased noise that results from decreasing the power consumption. Approach: To show the potential of increasing the shaping time to decrease the noise level, synchrotron measurements were performed using a detector prototype with two shaping time settings. From the measurements, a simulation model was developed and used to predict the performance of a future channel design. Results: Based on the synchrotron measurements, we show that increasing the shaping time from 28.1 to 39.4 ns decreases the noise and increases the signal-to-noise ratio with 6.5% at low count rates. With the developed simulation model, we predict that a 50% decrease in power can be attained in a proposed future detector design by increasing the shaping time with a factor of 1.875. Conclusion: Our results show that the shaping time can be an important tool to adapt the pulse length and noise level to the photon flux and thereby optimize the dose efficiency of photon-counting silicon detectors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA