Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Cell Biol ; 103(2): 151397, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38387258

RESUMEN

The cytoplasmic actin proteins, ß- and γ-actin, are 99% identical but thought to perform non-redundant functions. The nucleotide coding regions of cytoplasmic actin genes, Actb and Actg1, are 89% identical. Knockout (KO) of Actb by Cre-mediated deletion of first coding exons 2 and 3 in mice is embryonic lethal and fibroblasts derived from KO embryos (MEFs) fail to proliferate. In contrast, Actg1 KO MEFs display with a much milder defect in cell proliferation and Actg1 KO mice are viable, but present with increased perinatal lethality. Recent studies have identified important protein-independent functions for both Actb and Actg1 and demonstrate that deletions within the Actb nucleotide sequence, and not loss of the ß-actin protein, cause the most severe phenotypes in KO mice and cells. Here, we use a multi-omics approach to better understand what drives the phenotypes of Actb KO MEFs. RNA-sequencing and mass spectrometry reveal largescale changes to the transcriptome, proteome, and phosphoproteome in cells lacking Actb but not those only lacking ß-actin protein. Pathway analysis of genes and proteins differentially expressed upon Actb KO suggest widespread dysregulation of genes involved in the cell cycle that may explain the severe defect in proliferation.


Asunto(s)
Actinas , Exones , Animales , Actinas/metabolismo , Actinas/genética , Ratones , Exones/genética , Ratones Noqueados , Puntos de Control del Ciclo Celular/genética , Ciclo Celular , Fibroblastos/metabolismo
2.
Stem Cell Reports ; 17(7): 1604-1619, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35688153

RESUMEN

Fibroblasts can be reprogrammed into induced cardiomyocyte-like cells (iCMs) by forced expression of cardiogenic transcription factors. However, it remains unknown how fibroblasts adopt a cardiomyocyte (CM) fate during their spontaneous ongoing transdifferentiation toward myofibroblasts (MFs). By tracing fibroblast lineages following cardiac reprogramming in vitro, we found that most mature iCMs are derived directly from fibroblasts without transition through the MF state. This direct conversion is attributable to mutually exclusive induction of cardiac sarcomeres and MF cytoskeletal structures in the cytoplasm of fibroblasts during reprogramming. For direct fate switch from fibroblasts to iCMs, significant remodeling of actin isoforms occurs in fibroblasts, including induction of α-cardiac actin and decrease of the actin isoforms predominant in MFs. Accordingly, genetic or pharmacological ablation of MF-enriched actin isoforms significantly enhances cardiac reprogramming. Our results demonstrate that remodeling of actin isoforms is required for fibroblast to CM fate conversion by cardiac reprogramming.


Asunto(s)
Actinas , Fibroblastos , Citoesqueleto de Actina , Actinas/genética , Transdiferenciación Celular/genética , Reprogramación Celular/genética , Miocitos Cardíacos
3.
Proc Natl Acad Sci U S A ; 119(25): e2205536119, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35700360

RESUMEN

Dystrophin is an essential muscle protein that contributes to cell membrane stability by mechanically linking the actin cytoskeleton to the extracellular matrix via an adhesion complex called the dystrophin-glycoprotein complex. The absence or impaired function of dystrophin causes muscular dystrophy. Focal adhesions (FAs) are also mechanosensitive adhesion complexes that connect the cytoskeleton to the extracellular matrix. However, the interplay between dystrophin and FA force transmission has not been investigated. Using a vinculin-based bioluminescent tension sensor, we measured FA tension in transgenic C2C12 myoblasts expressing wild-type (WT) dystrophin, a nonpathogenic single nucleotide polymorphism (SNP) (I232M), or two missense mutations associated with Duchenne (L54R), or Becker muscular dystrophy (L172H). Our data revealed cross talk between dystrophin and FAs, as the expression of WT or I232M dystrophin increased FA tension compared to dystrophin-less nontransgenic myoblasts. In contrast, the expression of L54R or L172H did not increase FA tension, indicating that these disease-causing mutations compromise the mechanical function of dystrophin as an FA allosteric regulator. Decreased FA tension caused by these mutations manifests as defective migration, as well as decreased Yes-associated protein 1 (YAP) activation, possibly by the disruption of the ability of FAs to transmit forces between the extracellular matrix and cytoskeleton. Our results indicate that dystrophin influences FA tension and suggest that dystrophin disease-causing missense mutations may disrupt a cellular tension-sensing pathway in dystrophic skeletal muscle.


Asunto(s)
Distrofina , Adhesiones Focales , Mecanotransducción Celular , Distrofia Muscular de Duchenne , Animales , Línea Celular , Distrofina/genética , Adhesiones Focales/genética , Mecanotransducción Celular/genética , Ratones , Células Musculares , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Mutación Missense , Polimorfismo de Nucleótido Simple
4.
Mol Biol Cell ; 33(9): ar77, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35594181

RESUMEN

Cytoplasmic ß- and γ-actin proteins are 99% identical but support unique organismal functions. The cytoplasmic actin nucleotide sequences Actb and Actg1, respectively, are more divergent but still 89% similar. Actb-/- mice are embryonic lethal and Actb-/- cells fail to proliferate, but editing the Actb gene to express γ-actin (Actbc-g) resulted in none of the overt phenotypes of the knockout revealing protein-independent functions for Actb. To determine if Actg1 has a protein-independent function, we crossed Actbc-g and Actg1-/- mice to generate the bG/0 line, where the only cytoplasmic actin expressed is γ-actin from Actbc-g. The bG/0 mice were viable but showed a survival defect despite expressing γ-actin protein at levels no different from bG/gG with normal survival. A unique myopathy phenotype was also observed in bG/0 mice. We conclude that impaired survival and myopathy in bG/0 mice are due to loss of Actg1 nucleotide-dependent function(s). On the other hand, the bG/0 genotype rescued functions impaired by Actg1-/-, including cell proliferation and auditory function, suggesting a role for γ-actin protein in both fibroblasts and hearing. Together, these results identify nucleotide-dependent functions for Actg1 while implicating γ-actin protein in more cell-/tissue-specific functions.


Asunto(s)
Actinas , Nucleótidos , Animales , Ratones , Actinas/metabolismo , Citoplasma/metabolismo , Fibroblastos/metabolismo , Fenotipo
5.
Proc Natl Acad Sci U S A ; 115(31): 7973-7978, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30012594

RESUMEN

The highly similar cytoplasmic ß- and γ-actins differ by only four functionally similar amino acids, yet previous in vitro and in vivo data suggest that they support unique functions due to striking phenotypic differences between Actb and Actg1 null mouse and cell models. To determine whether the four amino acid variances were responsible for the functional differences between cytoplasmic actins, we gene edited the endogenous mouse Actb locus to translate γ-actin protein. The resulting mice and primary embryonic fibroblasts completely lacked ß-actin protein, but were viable and did not present with the most overt and severe cell and organismal phenotypes observed with gene knockout. Nonetheless, the edited mice exhibited progressive high-frequency hearing loss and degeneration of actin-based stereocilia as previously reported for hair cell-specific Actb knockout mice. Thus, ß-actin protein is not required for general cellular functions, but is necessary to maintain auditory stereocilia.


Asunto(s)
Actinas/metabolismo , Citoplasma/metabolismo , Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Modelos Biológicos , Actinas/genética , Animales , Línea Celular , Citoplasma/genética , Embrión de Mamíferos/citología , Fibroblastos/citología , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...