Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 13(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38397778

RESUMEN

Benzo[a]pyrene (B[a]P), a highly carcinogenic polycyclic aromatic hydrocarbon primarily formed during incomplete organic matter combustion, undergoes a series of hepatic metabolic reactions once absorbed into the body. B[a]P contributes to liver damage, ranging from molecular DNA damage to the onset and progression of various diseases, including cancer. Specifically, B[a]P induces oxidative stress via reactive oxygen species generation within cells. Consequently, more research has focused on exploring the underlying mechanisms of B[a]P-induced oxidative stress and potential strategies to counter its hepatic toxicity. Flavonoids, natural compounds abundant in plants and renowned for their antioxidant properties, possess the ability to neutralize the adverse effects of free radicals effectively. Although extensive research has investigated the antioxidant effects of flavonoids, limited research has delved into their potential in regulating B[a]P metabolism to alleviate oxidative stress. This review aims to consolidate current knowledge on B[a]P-induced liver oxidative stress and examines the role of flavonoids in mitigating its toxicity.

2.
Appl Microbiol Biotechnol ; 108(1): 150, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38240838

RESUMEN

The evolution and rapid spread of multidrug-resistant (MDR) bacterial pathogens have become a major concern for human health and demand the development of alternative antimicrobial agents to combat this emergent threat. Conventional intracellular methods for producing metal nanoparticles (NPs) using whole-cell microorganisms have limitations, including binding of NPs to cellular components, potential product loss, and environmental contamination. In contrast, this study introduces a green, extracellular, and sustainable methodology for the bio-materialization of silver NPs (AgNPs) using renewable resource cell-free yeast extract. These extracts serve as a sustainable, biogenic route for both reducing the metal precursor and stabilizing the surface of AgNPs. This method offers several advantages such as cost-effectiveness, environment-friendliness, ease of synthesis, and scalability. HR-TEM imaging of the biosynthesized AgNPs revealed an isotropic growth route, resulting in an average size of about ~ 18 nm and shapes ranging from spherical to oval. Further characterization by FTIR and XPS results revealed various functional groups, including carboxyl, hydroxyl, and amide contribute to enhanced colloidal stability. AgNPs exhibited potent antibacterial activity against tested MDR strains, showing particularly high efficacy against Gram-negative bacteria. These findings suggest their potential role in developing alternative treatments to address the growing threat of antimicrobial resistance. Additionally, seed priming experiments demonstrated that pre-sowing treatment with AgNPs improves both the germination rate and survival of Sorghum jowar and Zea mays seedlings. KEY POINTS: •Yeast extract enables efficient, cost-effective, and eco-friendly AgNP synthesis. •Biosynthesized AgNPs showed strong antibacterial activity against MDR bacteria. •AgNPs boost seed germination and protect against seed-borne diseases.


Asunto(s)
Nanopartículas del Metal , Plata , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas del Metal/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Semillas , Plata/farmacología , Plata/química , Espectroscopía Infrarroja por Transformada de Fourier
3.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38279324

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) is caused by lipid accumulation within the liver. The pathogenesis underlying its development is poorly understood. Benzo[a]pyrene (B[a]P) is a polycyclic aromatic hydrocarbon and a group 1 carcinogen. The aryl hydrocarbon receptor activation by B[a]P induces cytochrome P450 (CYP) enzymes, contributing to hepatic lipid accumulation. However, the molecular mechanism through which the B[a]P-mediated induction of CYP enzymes causes hepatic lipid accumulation is unknown. This research was conducted to elucidate the role of CYP1B1 in regulating B[a]P-induced lipid accumulation within hepatocytes. B[a]P increased hepatic lipid accumulation, which was mitigated by CYP1B1 knockdown. An increase in the mammalian target of rapamycin (mTOR) by B[a]P was specifically reduced by CYP1B1 knockdown. The reduction of mTOR increased the expression of autophagic flux-related genes and promoted phagolysosome formation. Both the expression and translocation of TFE3, a central regulator of lipophagy, were induced, along with the expression of lipophagy-related genes. Conversely, enhanced mTOR activity reduced TFE3 expression and translocation, which reduced the expression of lipophagy-related genes, diminished phagolysosome production, and increased lipid accumulation. Our results indicate that B[a]P-induced hepatic lipid accumulation is caused by CYP1B1-induced mTOR and the reduction of lipophagy, thereby introducing novel targets and mechanisms to provide insights for understanding B[a]P-induced MASLD.


Asunto(s)
Benzo(a)pireno , Hígado , Benzo(a)pireno/toxicidad , Citocromo P-450 CYP1B1/genética , Hígado/metabolismo , Sistema Enzimático del Citocromo P-450 , Serina-Treonina Quinasas TOR/genética , Receptores de Hidrocarburo de Aril/metabolismo , Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Lípidos , Citocromo P-450 CYP1A1/genética
4.
Toxins (Basel) ; 15(12)2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-38133172

RESUMEN

The escalating prevalence of antibiotic-resistant bacteria poses an immediate and grave threat to public health. Antimicrobial peptides (AMPs) have gained significant attention as a promising alternative to conventional antibiotics. Animal venom comprises a diverse array of bioactive compounds, which can be a rich source for identifying new functional peptides. In this study, we identified a toxin peptide, Lycotoxin-Pa1a (Lytx-Pa1a), from the transcriptome of the Pardosa astrigera spider venom gland. To enhance its functional properties, we employed an in silico approach to design a novel hybrid peptide, KFH-Pa1a, by predicting antibacterial and cytotoxic functionalities and incorporating the amino-terminal Cu(II)- and Ni(II) (ATCUN)-binding motif. KFH-Pa1a demonstrated markedly superior antimicrobial efficacy against pathogens, including multidrug-resistant (MDR) Pseudomonas aeruginosa, compared to Lytx-Pa1a. Notably, KFH-Pa1a exerted several distinct mechanisms, including the disruption of the bacterial cytoplasmic membrane, the generation of intracellular ROS, and the cleavage and inhibition of bacterial DNA. Additionally, the hybrid peptide showed synergistic activity when combined with conventional antibiotics. Our research not only identified a novel toxin peptide from spider venom but demonstrated in silico-based design of hybrid AMP with strong antimicrobial activity that can contribute to combating MDR pathogens, broadening the utilization of biological resources by incorporating computational approaches.


Asunto(s)
Antiinfecciosos , Venenos de Araña , Animales , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Pseudomonas aeruginosa , Antibacterianos/farmacología , Antibacterianos/química , Antiinfecciosos/farmacología , Bacterias , Venenos de Araña/farmacología , Pruebas de Sensibilidad Microbiana
5.
Antibiotics (Basel) ; 12(12)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38136742

RESUMEN

With the increasing challenge of controlling infectious diseases due to the emergence of antibiotic-resistant strains, the importance of discovering new antimicrobial agents is rapidly increasing. Animal venoms contain a variety of functional peptides, making them a promising platform for pharmaceutical development. In this study, a novel toxin peptide with antibacterial and anti-inflammatory activities was discovered from the spider venom gland transcriptome by implementing computational approaches. Lycotoxin-Pa2a (Lytx-Pa2a) showed homology to known-spider toxin, where functional prediction indicated the potential of both antibacterial and anti-inflammatory peptides without hemolytic activity. The colony-forming assay and minimum inhibitory concentration test showed that Lytx-Pa2a exhibited comparable or stronger antibacterial activity against pathogenic strains than melittin. Following mechanistic studies revealed that Lytx-Pa2a disrupts both cytoplasmic and outer membranes of bacteria while simultaneously inducing the accumulation of reactive oxygen species. The peptide exerted no significant toxicity when treated to human primary cells, murine macrophages, and bovine red blood cells. Moreover, Lytx-Pa2a alleviated lipopolysaccharide-induced inflammation in mouse macrophages by suppressing the expression of inflammatory mediators. These findings not only suggested that Lytx-Pa2a with dual activity can be utilized as a new antimicrobial agent for infectious diseases but also demonstrated the implementation of in silico methods for discovering a novel functional peptide, which may enhance the future utilization of biological resources.

6.
Pharmaceutics ; 15(11)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38004606

RESUMEN

Adipose tissue has a significant impact on breast cancer initiation and progression owing to its substantial proportion in the breast. Adipose-derived mesenchymal stem cells (ADMSCs) are major players in the breast tumor microenvironment (TME) as they interact with cancer cells. The intricate interaction between ADMSCs and cancer cells not only drives the differentiation of ADMSCs into cancer-associated fibroblasts (CAFs) but also the metastasis of cancer cells, which is attributed to the CXCL12/CXCR4 axis. We investigated the effects of curcumin, a flavonoid known for CXCL12/CXCR4 axis inhibition, on breast TME by analyzing whether it can disrupt the ADMSC-cancer positive loop. Using MCF7 breast cancer cell-derived conditioned medium (MCF7-CM), we induced ADMSC transformation and verified that curcumin diminished the phenotypic change, inhibiting CAF marker expression. Additionally, curcumin suppressed the CXCL12/CXCR4 axis and its downstream signaling both in ADMSCs and MCF7 cells. The CM from ADMSCs, whose ADMSC-to-CAF transformation was repressed by the curcumin treatment, inhibited the positive feedback loop between ADMSCs and MCF7 as well as epithelial-mesenchymal transition in MCF7. Our study showed that curcumin is a potent anti-cancer agent that can remodel the breast TME, thereby restricting the ADMSC-cancer positive feedback loop associated with the CXCL12/CXCR4 axis.

7.
Sci Rep ; 13(1): 16384, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773206

RESUMEN

Bone marrow-derived human mesenchymal stem cells (hMSCs) can differentiate into various lineages, such as chondrocytes, adipocytes, osteoblasts, and neuronal lineages. It has been shown that the high-efficiency DNA-repair capacity of hMSCs is decreased during their differentiation. However, the underlying its mechanism during adipogenesis and osteogenesis is unknown. Herein, we investigated how alkyl-damage repair is modulated during adipogenic and osteogenic differentiation, especially focusing on the base excision repair (BER) pathway. Response to an alkylation agent was assessed via quantification of the double-strand break (DSB) foci and activities of BER-related enzymes during differentiation in hMSCs. Adipocytes showed high resistance against methyl methanesulfonate (MMS)-induced alkyl damage, whereas osteoblasts were more sensitive than hMSCs. During the differentiation, activities, and protein levels of uracil-DNA glycosylase were found to be regulated. In addition, ligation-related proteins, such as X-ray repair cross-complementing protein 1 (XRCC1) and DNA polymerase ß, were upregulated in adipocytes, whereas their levels and recruitment declined during osteogenesis. These modulations of BER enzyme activity during differentiation influenced DNA repair efficiency and the accumulation of DSBs as repair intermediates in the nucleus. Taken together, we suggest that BER enzymatic activity is regulated in adipogenic and osteogenic differentiation and these alterations in the BER pathway led to different responses to alkyl damage from those in hMSCs.


Asunto(s)
Adipogénesis , Células Madre Mesenquimatosas , Humanos , Adipogénesis/genética , Osteogénesis/fisiología , Médula Ósea/metabolismo , Células Cultivadas , Diferenciación Celular/fisiología , Reparación del ADN , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo
8.
Front Microbiol ; 14: 1249175, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37577428

RESUMEN

As the emergence and prevalence of antibiotic-resistant strains have resulted in a global crisis, there is an urgent need for new antimicrobial agents. Antimicrobial peptides (AMPs) exhibit inhibitory activity against a wide spectrum of pathogens and can be utilized as an alternative to conventional antibiotics. In this study, two novel AMPs were identified from the venom transcriptome of the spider Argiope bruennichi (Scopoli, 1772) using in silico methods, and their antimicrobial activity was experimentally validated. Aranetoxin-Ab2a (AATX-Ab2a) and Aranetoxin-Ab3a (AATX-Ab3a) were identified by homology analysis and were predicted to have high levels of antimicrobial activity based on in silico analysis. Both peptides were found to have antibacterial effect against Gram-positive and -negative strains, and, in particular, showed significant inhibitory activity against multidrug-resistant Pseudomonas aeruginosa isolates. In addition, AATX-Ab2a and AATX-Ab3a inhibited animal and vegetable fungal strains, while showing low toxicity to normal human cells. The antimicrobial activity of the peptides was attributed to the increased permeability of microbial membranes. The study described the discovery of novel antibiotic candidates, AATX-Ab2a and AATX-Ab3a, using the spider venom gland transcriptome, and validated an in silico-based method for identifying functional substances from biological resources.

9.
Microsc Res Tech ; 86(9): 1154-1168, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37421302

RESUMEN

Silver nanoparticles (AgNPs) have emerged as highly effective antimicrobial agents against multidrug-resistant (MDR) pathogens. This study aims to employ green chemistry principles for AgNP synthesis involving phytochemical-rich extract from Glycyrrhiza glabra roots. The approach highlights using renewable feedstocks, safer chemicals, minimum byproducts, and process scale-up. The synthesis of AgNPs was assessed using a surface plasmon resonance band at 420 nm, and structural properties were characterized using TEM, x-ray diffraction, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. This method enables the production of high-yield dispersions of AgNPs with desired physicochemical characteristics, including dark yellow solution, size (~20 nm), spherical to an oval shape, crystal structure, and stable colloidal properties. The antimicrobial activity of AgNPs was investigated against the MDR bacteria strains of gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli). This work reveals that the antimicrobial activity of AgNPs can be influenced by bacterial cell wall components. The results demonstrate the strong interaction between AgNPs and E. coli, exhibiting a dose-dependent antibacterial response. The green approach facilitated the safer, facile, and rapid synthesis of colloidal dispersions of AgNPs, providing a sustainable and promising alternative to conventional chemical and physical methods. Furthermore, the effect of AgNPs on various growth parameters, including seed germination, root and shoot elongation, and dry weight biomass, was assessed for mung bean seedlings. The results revealed phytostimulatory effects, suggesting the promising prospects of AgNPs in the nano-priming of agronomic seeds. RESEARCH HIGHLIGHTS: Glycyrrhiza glabra root extract enabled rapid, high-yield, and eco-friendly synthesis of silver nanoparticles (AgNPs). Spectrophotometric analysis examined the optical properties, scalability, and stability of AgNPs. Transmission electron microscopy provided insights into the size, shape, and dispersity of AgNPs. Scanning electron microscopy revealed significant damage to gram-negative bacterial cell morphology and membrane integrity. AgNPs were found to enhance seed germination, seedling growth, and biomass yield of Vigna radiata.


Asunto(s)
Nanopartículas del Metal , Plata , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Escherichia coli , Antioxidantes/farmacología , Inhibidores Enzimáticos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Espectroscopía Infrarroja por Transformada de Fourier
10.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047129

RESUMEN

Toluene diisocyanate (TDI) is commonly used in manufacturing, and it is highly reactive and causes respiratory damage. This study aims to identify the mechanism of tumorigenesis in bronchial epithelial cells induced by chronic TDI exposure. In addition, transcriptome analysis results confirmed that TDI increases transforming growth factor-beta 1 (TGF-ß1) expression and regulates genes associated with cancerous characteristics in bronchial cells. Our chronically TDI-exposed model exhibited elongated spindle-like morphology, a mesenchymal characteristic. Epithelial-mesenchymal transition (EMT) was evaluated following chronic TDI exposure, and EMT biomarkers increased concentration-dependently. Furthermore, our results indicated diminished cell adhesion molecules and intensified cell migration and invasion. In order to investigate the cellular regulatory mechanisms resulting from chronic TDI exposure, we focused on TGF-ß1, a key factor regulated by TDI exposure. As predicted, TGF-ß1 was significantly up-regulated and secreted in chronically TDI-exposed cells. In addition, SMAD2/3 was also activated considerably as it is the direct target of TGF-ß1 and TGF-ß1 receptors. Inhibiting TGF-ß1 signaling through blocking of the TGF-ß receptor attenuated EMT and cell migration in chronically TDI-exposed cells. Our results corroborate that chronic TDI exposure upregulates TGF-ß1 secretion, activates TGF-ß1 signal transduction, and leads to EMT and other cancer properties.


Asunto(s)
2,4-Diisocianato de Tolueno , Factor de Crecimiento Transformador beta1 , Factor de Crecimiento Transformador beta1/metabolismo , Línea Celular Tumoral , Transducción de Señal , Movimiento Celular , Transición Epitelial-Mesenquimal
11.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36555235

RESUMEN

Despite the current developments in cancer therapeutics, efforts to excavate new anticancer agents continue rigorously due to obstacles, such as side effects and drug resistance. Anticancer peptides (ACPs) can be utilized to treat cancer because of their effectiveness on a variety of molecular targets, along with high selectivity and specificity for cancer cells. In the present study, a novel ACP was de novo designed using in silico methods, and its functionality and molecular mechanisms of action were explored. AC-P19M was discovered through functional prediction and sequence modification based on peptide sequences currently available in the database. The peptide exhibited anticancer activity against lung cancer cells, A549 and H460, by disrupting cellular membranes and inducing apoptosis while showing low toxicity towards normal and red blood cells. In addition, the peptide inhibited the migration and invasion of lung cancer cells and reversed epithelial-mesenchymal transition. Moreover, AC-P19M showed anti-angiogenic activity through the inhibition of vascular endothelial growth factor receptor 2 signaling. Our findings suggest that AC-P19M is a novel ACP that directly or indirectly targets cancer cells, demonstrating the potential development of an anticancer agent and providing insights into the discovery of functional substances based on an in silico approach.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Péptidos , Humanos , Células A549 , Antineoplásicos/farmacología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Péptidos/farmacología
12.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36361910

RESUMEN

Benzo[a]pyrene (B[a]P) is metabolized in the liver into highly reactive mutagenic and genotoxic metabolites, which induce carcinogenesis. The mutagenic factors, including B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE) and reactive oxygen species, generated during B[a]P metabolism can cause DNA damage, such as BPDE-DNA adducts, 8-oxo-dG, and double-strand breaks (DSBs). In this study, we mechanistically investigated the effects of quercetin and its major metabolite isorhamnetin on the repair of B[a]P-induced DNA DSBs. Whole-transcriptome analysis showed that quercetin and isorhamnetin each modulate the expression levels of genes involved in DNA repair, especially those in homologous recombination. RAD51 was identified as a key gene whose expression level was decreased in B[a]P-treated cells and increased by quercetin or isorhamnetin treatment. Furthermore, the number of γH2AX foci induced by B[a]P was significantly decreased by quercetin or isorhamnetin, whereas RAD51 mRNA and protein levels were increased. Additionally, among the five microRNAs (miRs) known to downregulate RAD51, miR-34a level was significantly downregulated by quercetin or isorhamnetin. The protective effect of quercetin or isorhamnetin was lower in cells transfected with a miR-34a mimic than in non-transfected cells, and the B[a]P-induced DNA DSBs remained unrepaired. Our results show that quercetin and isorhamnetin each upregulates RAD51 by downregulating miR-34a and thereby suppresses B[a]P-induced DNA damage.


Asunto(s)
7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido , MicroARNs , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/toxicidad , Benzo(a)pireno/toxicidad , Quercetina/farmacología , Regulación hacia Abajo , Daño del ADN , Aductos de ADN , Mutágenos/toxicidad , MicroARNs/genética
13.
Cells ; 11(19)2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36231113

RESUMEN

Human mesenchymal stem cells (hMSCs) are promising candidates for stem cell therapy and are known to secrete programmed death-1 (PD-1) ligand 1 (PD-L1) regulating T cell-mediated immunosuppression. Given the limitations of current stem cell therapy approaches, improvements in immunomodulatory capacity and stem cell differentiation efficacy are needed. In this study, we propose novel strategies to overcome the challenges that remain in hMSC-mediated bone regeneration. We found that PD-1 is highly expressed in osteoblasts, and the PD-1/PD-L1 axis mediated the decreased proinflammatory cytokine expressions in differentiated osteoblasts cocultured with human adipose derived mesenchymal stem cells (hADMSCs). Moreover, the decrease was attenuated by PD-1/PD-L1 pathway inhibition. Osteogenic properties including osteogenic gene expression and calcium deposits were increased in osteoblasts cocultured with hADMSCs compared with those that were monocultured. Osteoblasts treated with PD-L1 and exosomes from hADMSCs also exhibited enhanced osteogenic properties, including calcium deposits and osteogenic gene expression. In our cocultured system that mimics the physiological conditions of the bone matrix, the PD-1/PD-L1 axis mediated the increased expression of osteogenic genes, thereby enhancing the osteogenic properties, while the calcium deposits of osteoblasts were maintained. Our results provide the therapeutic potentials and novel roles of the PD-1/PD-L1 axis in bone matrix for modulating the bone properties and immunosuppressive potentials that can aid in the prevention of bone diseases via maintaining bone homeostasis.


Asunto(s)
Células Madre Mesenquimatosas , Receptor de Muerte Celular Programada 1 , Antígeno B7-H1/metabolismo , Calcio/metabolismo , Diferenciación Celular , Citocinas/metabolismo , Homeostasis , Humanos , Ligandos , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo
14.
IEEE J Biomed Health Inform ; 26(12): 6150-6160, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36070258

RESUMEN

Ion channels, which can be modulated by peptides, are promising drug targets for neurological, metabolic, and cardiovascular disorders. Because it is expensive and labor-intensive to experimentally screen ion channel-modulating peptides (IMPs), in-silico approaches can serve as excellent alternatives. In this study, we present PrIMP, prediction models for screening IMPs that can target sodium, potassium, and calcium ion channels, as well as nicotine acetylcholine receptors (nAChRs). To overcome the data insufficiency of the IMPs, we utilized two types of knowledge transfer approaches: multi-task learning (MTL) and transfer learning (TL). MTL enabled model training for four target tasks simultaneously with hard parameter sharing, thereby increasing model generalization. TL transferred knowledge of pre-trained model weights from antimicrobial peptide data, which was a much larger, naturally-occurring functional peptide dataset that could potentially improve the model performance. MTL and TL successfully improved the prediction performance of prediction models. In addition, a hybrid approach by implementing deep learning along with traditional machine learning was utilized, with additional performance improvements. PrIMP achieved F1 scores of 0.924 (sodium ion channel), 0.937 (potassium ion channel), 0.898 (calcium ion channel), and 0.931 (nAChRs). The pre-processed dataset and proposed model are available at https://github.com/bzlee-bio/PrIMP.


Asunto(s)
Canales Iónicos , Aprendizaje Automático , Humanos , Péptidos
15.
Front Microbiol ; 13: 971503, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090084

RESUMEN

Antimicrobial peptides (AMPs) show promises as valuable compounds for developing therapeutic agents to control the worldwide health threat posed by the increasing prevalence of antibiotic-resistant bacteria. Animal venom can be a useful source for screening AMPs due to its various bioactive components. Here, the deep learning model was developed to predict species-specific antimicrobial activity. To overcome the data deficiency, a multi-task learning method was implemented, achieving F1 scores of 0.818, 0.696, 0.814, 0.787, and 0.719 for Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis, respectively. Peptides PA-Full and PA-Win were identified from the model using different inputs of full and partial sequences, broadening the application of transcriptome data of the spider Pardosa astrigera. Two peptides exhibited strong antimicrobial activity against all five strains along with cytocompatibility. Our approach enables excavating AMPs with high potency, which can be expanded into the fields of biology to address data insufficiency.

16.
Front Immunol ; 13: 821070, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432369

RESUMEN

As spider venom is composed of various bioactive substances, it can be utilized as a platform for discovering future therapeutics. Host defense peptides are great candidates for developing novel antimicrobial agents due to their multifunctional properties. In this study, novel functional peptides were rationally designed to have dual antibacterial and anti-inflammatory activities with high cytocompatibility. Based on a template sequence from the transcriptome of spider Agelena koreana, a series of via in silico analysis were conducted, incorporating web-based machine learning tools along with the alteration of amino acid residues. Two peptides, Ak-N' and Ak-N'm, were designed and were subjected to functional validation. The peptides inhibited gram-negative and gram-positive bacteria by disrupting the outer and bacterial cytoplasmic membrane. Moreover, the peptides down-regulated the expression of pro-inflammatory mediators, tumor necrosis factor-α, interleukin (IL)-1ß, and IL6. Along with low cytotoxicity, Ak-N'm was shown to interact with macrophage surface receptors, inhibiting both Myeloid differentiation primary response 88-dependent and TIR-domain-containing adapter-inducing interferon-ß-dependent pathways of Toll-like receptor 4 signaling on lipopolysaccharide-stimulated THP-1-derived macrophages. Here, we rationally designed functional peptides based on the suggested in silico strategy, demonstrating new insights for utilizing biological resources as well as developing therapeutic agents with enhanced properties.


Asunto(s)
Antiinfecciosos , Lipopolisacáridos , Antibacterianos , Antiinflamatorios/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Lipopolisacáridos/farmacología
17.
Cells ; 11(3)2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35159256

RESUMEN

The MTOR signal is known to be activated in various cancer cells including hepatocellular carcinoma (HCC) cells. Rapamycin, a specific inhibitor of MTOR, has been widely used as an immunosuppressant in organ transplant patients, and its clinical application has been recently expanded to cancer therapy. In this study, the anti-proliferative effect of rapamycin was investigated in four different HCC cell lines. Rapamycin effectively inhibited the proliferation of Huh7 or Hep3B, but not that of HepG2 or SNU3160 cells. Interestingly, rapamycin increased Prospero-related homeobox 1 (PROX1) expression at the protein level, but did not affect its transcript in Huh7 as well as Hep3B cells. Moreover, immunoprecipitation assays showed that PROX1 ubiquitination was downregulated by rapamycin. Furthermore, PROX1 over-expression or siRNA knock-down in Huh7 and Hep3B cells reduced or increased proliferation, respectively. The effect of PROX1 over-expression on the sensitivity to rapamycin was not synergistic, but the effect of MTOR inhibition on cell proliferation was diminished by PROX1 siRNA. Finally, Huh7 cells were inoculated into the flanks of nude mice and rapamycin was injected daily for 14 days. The xenograft volume was decreased and PROX1 expression was increased by rapamycin. These results indicate that PROX1 plays a key role in the anti-proliferative effect of rapamycin and suggest that the increased PROX1 by MTOR inhibition can be used as a useful marker for predicting whether HCC cells can be affected by rapamycin.


Asunto(s)
Carcinoma Hepatocelular , Proteínas de Homeodominio , Neoplasias Hepáticas , Sirolimus , Proteínas Supresoras de Tumor , Animales , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proteínas de Homeodominio/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Ratones , Ratones Desnudos , ARN Interferente Pequeño/uso terapéutico , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/metabolismo
18.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35008945

RESUMEN

Toluene diisocyanate (TDI), a major intermediate agent used in the manufacturing industry, causes respiratory symptoms when exposed to the human body. In this study, we aimed to determine the molecular mechanism of TDI toxicity. To investigate the impact of TDI exposure on global gene expression, we performed transcriptomic analysis of human bronchial epithelial cells (BEAS-2B) after TDI treatment. Differentially expressed genes (DEGs) were sorted and used for clustering and network analysis. Among DEGs, dual-specificity phosphatase 6 (DUSP6) was one of the genes significantly changed by TDI exposure. To verify the expression level of DUSP6 and its effect on lung cells, the mRNA and protein levels of DUSP6 were analyzed. Our results showed that DUSP6 was dose-dependently upregulated by TDI treatment. Thereby, the phosphorylation of ERK1/2, one of the direct inhibitory targets of DUSP6, was decreased. TDI exposure also increased the mRNA level of p53 along with its protein and activity which trans-activates DUSP6. Since TRPA1 is known as a signal integrator activated by TDI, we analyzed the relevance of TRPA1 receptor in DUSP6 regulation. Our data revealed that up-regulation of DUSP6 mediated by TDI was blocked by a specific antagonist against TRPA1. TDI exposure attenuated the apoptotic response, which suggests that it promotes the survival of cancerous cells. In conclusion, our results suggest that TDI induces DUSP6 and p53, but attenuates ERK1/2 activity through TRPA1 receptor activation, leading to cytotoxicity.


Asunto(s)
Fosfatasa 6 de Especificidad Dual/genética , Canal Catiónico TRPA1/agonistas , 2,4-Diisocianato de Tolueno/efectos adversos , Proteína p53 Supresora de Tumor/genética , Apoptosis/efectos de los fármacos , Biomarcadores , Bronquios , Línea Celular , Células Cultivadas , Biología Computacional/métodos , Fosfatasa 6 de Especificidad Dual/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inmunohistoquímica , Transducción de Señal , Canal Catiónico TRPA1/antagonistas & inhibidores , 2,4-Diisocianato de Tolueno/toxicidad , Proteína p53 Supresora de Tumor/metabolismo
19.
Cells ; 10(12)2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34943917

RESUMEN

Adipocytes interact with adipose tissue macrophages (ATMs) that exist as a form of M2 macrophage in healthy adipose tissue and are polarized into M1 macrophages upon cellular stress. ATMs regulate adipose tissue inflammation by secreting cytokines, adipokines, and chemokines. CXC-motif receptor 6 (CXCR6) is the chemokine receptor and interactions with its specific ligand CXC-motif chemokine ligand 16 (CXCL16) modulate the migratory capacities of human adipose-derived mesenchymal stem cells (hADMSCs). CXCR6 is highly expressed on differentiated adipocytes that are non-migratory cells. To evaluate the underlying mechanisms of CXCR6 in adipocytes, THP-1 human monocytes that can be polarized into M1 or M2 macrophages were co-cultured with adipocytes. As results, expression levels of the M1 polarization-inducing factor were decreased, while those of the M2 polarization-inducing factor were significantly increased in differentiated adipocytes in a co-cultured environment with additional CXCL16 treatment. After CXCL16 treatment, the anti-inflammatory factors, including p38 MAPK ad ERK1/2, were upregulated, while the pro-inflammatory pathway mediated by Akt and NF-κB was downregulated in adipocytes in a co-cultured environment. These results revealed that the CXCL16/CXCR6 axis in adipocytes regulates M1 or M2 polarization and displays an immunosuppressive effect by modulating pro-inflammatory or anti-inflammatory pathways. Our results may provide an insight into a potential target as a regulator of the immune response via the CXCL16/CXCR6 axis in adipocytes.


Asunto(s)
Adipocitos/citología , Adipocitos/metabolismo , Polaridad Celular , Quimiocina CXCL16/metabolismo , Macrófagos/citología , Células Madre Mesenquimatosas/citología , Receptores CXCR6/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Humanos , Inflamación/patología , Interleucina-10/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal , Células THP-1 , Factor de Necrosis Tumoral alfa/metabolismo
20.
Int J Mol Sci ; 22(22)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34830173

RESUMEN

As major components of spider venoms, neurotoxic peptides exhibit structural diversity, target specificity, and have great pharmaceutical potential. Deep learning may be an alternative to the laborious and time-consuming methods for identifying these peptides. However, the major hurdle in developing a deep learning model is the limited data on neurotoxic peptides. Here, we present a peptide data augmentation method that improves the recognition of neurotoxic peptides via a convolutional neural network model. The neurotoxic peptides were augmented with the known neurotoxic peptides from UniProt database, and the models were trained using a training set with or without the generated sequences to verify the augmented data. The model trained with the augmented dataset outperformed the one with the unaugmented dataset, achieving accuracy of 0.9953, precision of 0.9922, recall of 0.9984, and F1 score of 0.9953 in simulation dataset. From the set of all RNA transcripts of Callobius koreanus spider, we discovered neurotoxic peptides via the model, resulting in 275 putative peptides of which 252 novel sequences and only 23 sequences showing homology with the known peptides by Basic Local Alignment Search Tool. Among these 275 peptides, four were selected and shown to have neuromodulatory effects on the human neuroblastoma cell line SH-SY5Y. The augmentation method presented here may be applied to the identification of other functional peptides from biological resources with insufficient data.


Asunto(s)
Bases de Datos de Proteínas , Aprendizaje Profundo , Neurotoxinas , Péptidos , Venenos de Araña , Arañas , Animales , Neurotoxinas/química , Neurotoxinas/genética , Péptidos/química , Péptidos/genética , Venenos de Araña/química , Venenos de Araña/genética , Arañas/química , Arañas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...