Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Nutrients ; 16(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38613018

RESUMEN

Alopecia, a prevalent yet challenging condition with limited FDA-approved treatments which is accompanied by notable side effects, necessitates the exploration of natural alternatives. This study elucidated the hair growth properties of Gynostemma pentaphyllum leaf hydrodistillate (GPHD) both in vitro and in vivo. Furthermore, damulin B, a major component of GPHD, demonstrated hair growth-promoting properties in vitro. Beyond its established anti-diabetic, anti-obesity, and anti-inflammatory attributes, GPHD exhibited hair growth induction in mice parallel to minoxidil. Moreover, it upregulated the expression of autocrine factors associated with hair growth, including VEGF, IGF-1, KGF, and HGF. Biochemical assays revealed that minoxidil, GPHD, and damulin B induced hair growth via the Wnt/ß-catenin pathway through AKT signaling, aligning with in vivo experiments demonstrating improved expression of growth factors. These findings suggest that GPHD and damulin B contribute to the hair growth-inducing properties of dermal papilla cells through the AKT/ß-catenin signaling pathway.


Asunto(s)
Gynostemma , beta Catenina , Animales , Ratones , Minoxidil , Proteínas Proto-Oncogénicas c-akt , Vía de Señalización Wnt , Cabello
2.
Sci Rep ; 13(1): 21421, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38049592

RESUMEN

Androgenetic alopecia (AGA), also known as male pattern baldness, is a common hair loss condition influenced by genetic and hormonal factors. Variations in gene expression and androgen responsiveness have been observed between the frontal and occipital regions of AGA patients. However, obtaining and cultivating frontal hair follicles is challenging. Therefore, no matched frontal and occipital dermal papilla (DP) cell lines have been reported yet. This study aimed to establish matched immortalized human frontal and occipital scalp DP cell lines from AGA patients. Simian virus 40 large T antigen (SV40T-Ag) and human telomerase reverse transcriptase (hTERT) were introduced into primary human DP cells. The obtained cell lines were characterized by assessing their gene expression patterns, androgen receptor (AR) levels, and the presence of 5-alpha reductase (5αR). Additionally, we examined their response to dihydrotestosterone (DHT) and evaluated cell viability. The conditioned medium from the frontal DP cell line inhibited human hair follicle growth, leading to reduced keratinocyte proliferation and increased apoptosis. Furthermore, when the cells were cultured in a 3D environment mimicking in vivo conditions, the 3D cultured frontal DP cell line exhibited weaker sphere aggregation than the occipital DP cell line due to the increased expression of matrix metalloproteinase 1 (MMP1), MMP3, and MMP9. Additionally, the expression of DP signature genes was inhibited in the 3D cultured frontal DP cell line. These matched frontal and occipital DP cell lines hold significant potential as valuable resources for research on hair loss. Their establishment allows us to investigate the differences between frontal and occipital DP cells, contributing to a better understanding of the molecular mechanisms underlying AGA. Furthermore, these cell lines may be valuable for developing targeted therapeutic approaches for hair loss conditions.


Asunto(s)
Alopecia , Cuero Cabelludo , Humanos , Masculino , Cuero Cabelludo/metabolismo , Alopecia/genética , Alopecia/metabolismo , Andrógenos/farmacología , Andrógenos/metabolismo , Folículo Piloso/metabolismo , Línea Celular
3.
Cells ; 11(24)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36552830

RESUMEN

Alopecia is a common medical condition affecting both sexes. Dermal papilla (DP) cells are the primary source of hair regeneration in alopecia patients. Therapeutic applications of extracellular vesicles (EVs) are restricted by low yields, high costs, and their time-consuming collection process. Thus, engineered nanovesicles (eNVs) have emerged as suitable therapeutic biomaterials in translational medicine. We isolated eNVs by the serial extrusion of fibroblasts (FBs) using polycarbonate membrane filters and serial and ultracentrifugation. We studied the internalization, proliferation, and migration of human DP cells in the presence and absence of FB-eNVs. The therapeutic potential of FB-eNVs was studied on ex vivo organ cultures of human hair follicles (HFs) from three human participants. FB-eNVs (2.5, 5, 7.5, and 10 µg/mL) significantly enhanced DP cell proliferation, with the maximum effect observed at 7.5 µg/mL. FB-eNVs (5 and 10 µg/mL) significantly enhanced the migration of DP cells at 36 h. Western blotting results suggested that FB-eNVs contain vascular endothelial growth factor (VEGF)-a. FB-eNV treatment increased the levels of PCNA, pAKT, pERK, and VEGF-receptor-2 (VEGFR2) in DP cells. Moreover, FB-eNVs increased the human HF shaft size in a short duration ex vivo. Altogether, FB-eNVs are promising therapeutic candidates for alopecia.


Asunto(s)
Folículo Piloso , Femenino , Humanos , Masculino , Alopecia/terapia , Alopecia/metabolismo , Células Cultivadas , Dermis/citología , Fibroblastos , Folículo Piloso/crecimiento & desarrollo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Nanopartículas , Vesículas Extracelulares
4.
Bioengineering (Basel) ; 9(11)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36354556

RESUMEN

We aimed to establish screening and efficacy test techniques for use in the development of hair-promoting agents. To this end, we used the dermal papilla cell (DPc)-derived immortalized cell line (SV40T-hTERT DPc) and neonatal foreskin-derived keratinocyte cell line (Ker-CT) to form an immortalized cell-based hair follicle-like structure. The SV40T-hTERT DPc spheroids exhibited a higher cell ratio in the spheroids than primary DPc spheroids, and SV40T-hTERT DPc aggregated with spheroids larger in diameter than primary DPc when the same cell number was seeded into the low-adhesion plate. Microscopic imaging and fluorescence staining results indicated that both primary and immortalized cell combinations form a hair follicle-like structure with a long-stretched keratinocyte layer under the condition that the spheroids have the same diameter as that of in vivo dermal papillary tissue in the hair follicle. The hair follicle-like structure elongation was increased upon treatment with three known hair follicle growth-promoting compounds (minoxidil, tofacitinib, and ascorbic acid) compared with that in the control group. Therefore, using immortalized cells to generate a coherent follicle-like structure, we have developed models for screening and evaluating hair-care materials commonly used in the industry.

5.
World J Stem Cells ; 14(7): 527-538, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-36157528

RESUMEN

BACKGROUND: Dermal papillae (DP) and outer root sheath (ORS) cells play important roles in hair growth and regeneration by regulating the activity of hair follicle (HF) cells. AIM: To investigate the effects of human mesenchymal stem cell-derived extracellular vesicles (hMSC-EVs) on DP and ORS cells as well as HFs. EVs are known to regulate various cellular functions. However, the effects of hMSC-EVs on hair growth, particularly on human-derived HF cells (DP and ORS cells), and the possible mechanisms underlying these effects are unknown. METHODS: hMSC-EVs were isolated and characterized using transmission electron micro scopy, nanoparticle tracking analysis, western blotting, and flow cytometry. The activation of DP and ORS cells was analyzed using cellular proliferation, migration, western blotting, and real-time polymerase chain reaction. HF growth was evaluated ex vivo using human HFs. RESULTS: Wnt3a is present in a class of hMSC-EVs and associated with the EV membrane. hMSC-EVs promote the proliferation of DP and ORS cells. Moreover, they translocate ß-catenin into the nucleus of DP cells by increasing the expression of ß-catenin target transcription factors (Axin2, EP2 and LEF1) in DP cells. Treatment with hMSC-EVs also promoted the migration of ORS cells and enhanced the expression of keratin (K) differentiation markers (K6, K16, K17, and K75) in ORS cells. Furthermore, treatment with hMSC-EVs increases hair shaft elongation in cultured human HFs. CONCLUSION: These findings suggest that hMSC-EVs are potential candidates for further preclinical and clinical studies on hair loss treatment.

6.
Front Cell Dev Biol ; 10: 963278, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35912106

RESUMEN

Hair loss is one of the most common disorders that affect both male and female patients. Cell-derived nanovesicles (CDVs) are natural extracellular vesicles and engineered nanovesicles that can carry various biologicals materials such as proteins, lipids, mRNA, miRNA, and DNA. These vesicles can communicate with local or distant cells and are capable of delivering endogenous materials and exogenous drugs for regenerative therapies. Recent studies revealed that CDVs can serve as new treatment strategies for hair growth. Herein, we review current knowledge on the role of CDVs in applications to hair growth. The in-depth understanding of the mechanisms by which CDVs enable therapeutic effects for hair growth may accelerate successful clinical translation of these vesicles for treating hair loss.

7.
BMB Rep ; 55(11): 559-564, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36016500

RESUMEN

Diabetes mellitus is one of the most prevalent diseases in modern society. Many complicationssuch as hepatic cirrhosis, neuropathy, cardiac infarction, and so on are associated with diabetes. Although a relationship between diabetes and hair loss has been recently reported, the treatment of diabetic hair loss by Wnt/ß-catenin activators has not been achieved yet. In this study, we found that the depilation-induced anagen phase was delayed in both db/db mice and high-fat diet (HFD) and streptozotocin (STZ)-induced diabetic mice. In diabetic mice, both hair regrowth and wound-induced hair follicle neogenesis (WIHN) were reduced because of suppression of Wnt/ß-catenin signaling and decreased proliferation of hair follicle cells. We identified that KY19382, a small molecule that activates Wnt/ß-catenin signaling, restored the capabilities of regrowth and WIHN in diabetic mice. The Wnt/ß-catenin signaling activator also increased the length of the human hair follicle which was decreased under high glucose culture conditions. Overall, the diabetic condition reduced both hair regrowth and regeneration with suppression of the Wnt/ß-catenin signaling pathway. Consequently, the usage of Wnt/ß-catenin signaling activators could be a potential strategy to treat diabetes-induced alopecia patients. [BMB Reports 2022; 55(11): 559-564].


Asunto(s)
Alopecia , Diabetes Mellitus Experimental , Vía de Señalización Wnt , Animales , Humanos , Ratones , Alopecia/etiología , Alopecia/metabolismo , beta Catenina/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Cabello/metabolismo , Folículo Piloso/metabolismo
8.
Skin Pharmacol Physiol ; 35(5): 299-304, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35569447

RESUMEN

Psychosocial stress stimulates the secretion of glucocorticoids (GCs), which are stress-related neurohormones. GCs are secreted from hair follicles and promote hair follicle regression by inducing cellular apoptosis. Moreover, the androgen receptor (AR) is abundant in the balding scalp, and androgens suppress hair growth by binding to AR in androgenetic alopecia. First, by using immunofluorescence, we investigated whether the treatment of dermal papilla (DP) cells with dexamethasone (DEX), a synthetic GC, causes the translocation of the glucocorticoid receptor (GR) into the nucleus. DEX treatment causes the translocation of the GR into the nucleus. Next, we investigated whether stress-induced GCs affect the AR, a key factor in male pattern baldness. In this study, we first assessed that DEX increases the expression of AR mRNA in non-balding DP cells, which rarely express AR without androgen. RU486, a GR antagonist, attenuated DEX-inducible AR mRNA expression and AR activation in human non-balding DP cells. In addition, AR translocated into the nucleus after DEX treatment. Furthermore, we indeed showed that the expression of AR was induced in the nucleus by DEX in DP cells of human and mouse hair follicles. Our results first suggest that stress-associated hair loss may be due to increased AR expression and activity induced by DEX. These results demonstrate that hair loss occurs in non-balding scalps with low AR expression.


Asunto(s)
Andrógenos , Receptores Androgénicos , Alopecia/tratamiento farmacológico , Alopecia/metabolismo , Andrógenos/metabolismo , Animales , Dexametasona/metabolismo , Dexametasona/farmacología , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Folículo Piloso/metabolismo , Humanos , Masculino , Ratones , Mifepristona/metabolismo , Mifepristona/farmacología , ARN Mensajero/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Receptores de Glucocorticoides
9.
Exp Cell Res ; 409(1): 112887, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34678305

RESUMEN

Recent studies clearly show that cell-derived extracellular vesicles (EVs, including exosomes) can promote hair growth. However, large-scale production of EVs remains a big hurdle. Recently, extracellular vesicle mimetics (EMs) engineered by extrusion through various membranes are emerging as a complementary approach for large-scale production. In this study, to investigate their ability to induce hair growth, we generated macrophage-engineered EMs (MAC-EMs) that activated the human dermal papilla (DP) cells in vitro. MAC-EMs intradermally injected into the skin of C57BL/6 mice were retained for up to 72 h. Microscopy imaging revealed that MAC-EMs were predominately internalized into hair follicles. The MAC-EMs treatment induced hair regrowth in mice and hair shaft elongation in a human hair follicle, suggesting the potential of MAC-EMs as an alternative to EVs to overcome clinical limitation.


Asunto(s)
Vesículas Extracelulares/metabolismo , Folículo Piloso/crecimiento & desarrollo , Folículo Piloso/metabolismo , Cabello/metabolismo , Macrófagos/metabolismo , Animales , Proliferación Celular/fisiología , Células Cultivadas , Dermis/crecimiento & desarrollo , Dermis/metabolismo , Dermis/fisiología , Exosomas/metabolismo , Cabello/crecimiento & desarrollo , Humanos , Macrófagos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Células RAW 264.7 , Piel/metabolismo , Vía de Señalización Wnt/fisiología
10.
Br J Pharmacol ; 178(12): 2533-2546, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33751552

RESUMEN

BACKGROUND AND PURPOSE: The promotion of hair regeneration and growth heavily depends on the activation of Wnt/ß-catenin signalling in the hair follicle, including dermal papilla (DP). KY19382, one of the newly synthesized analogues of indirubin-3'-monoxime (I3O), was identified as a Wnt/ß-catenin signalling activator via inhibition of the interaction between CXXC-type zinc finger protein 5 (CXXC5) and dishevelled (Dvl). Given the close relationship between the Wnt/ß-catenin signalling and hair regeneration, we investigated the effect of KY19382 on hair regrowth and hair follicle neogenesis. EXPERIMENTAL APPROACH: In vitro hair induction effects of KY19382 were performed in human DP cells. The hair elongation effects of KY19382 were confirmed through the human hair follicle and vibrissa culture system. In vivo hair regeneration abilities of KY19382 were identified in three models: hair regrowth, wound-induced hair follicle neogenesis (WIHN) and hair patch assays using C57BL/6 mice. The hair regeneration abilities were analysed by immunoblotting, alkaline phosphatase (ALP) and immunohistochemical staining. KEY RESULTS: KY19382 activated Wnt/ß-catenin signalling and elevated expression of ALP and the proliferation marker PCNA in DP cells. KY19382 also increased hair length in ex vivo-cultured mouse vibrissa and human hair follicles and induced hair regrowth in mice. Moreover, KY19382 significantly promoted the generation of de novo hair follicles as shown by WIHN and hair patch assays. CONCLUSION AND IMPLICATIONS: These results indicate that KY19382 is a potential therapeutic drug that exhibits effective hair regeneration ability via activation of the Wnt/ß-catenin signalling for alopecia treatments.


Asunto(s)
Folículo Piloso , Cabello/crecimiento & desarrollo , Vía de Señalización Wnt/efectos de los fármacos , Animales , Folículo Piloso/crecimiento & desarrollo , Ratones , Ratones Endogámicos C57BL
11.
FEBS Lett ; 595(7): 942-953, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33523480

RESUMEN

Hair loss is a prevalent medical condition affecting both genders. In this study, we investigate the effects of a specific class of extracellular vesicles (EVs), namely human normal fibroblast-derived EVs (hFB-EVs), on human dermal papilla (DP) and outer root sheath (ORS) cells and examine the molecular mechanisms responsible for hair growth in hair follicles (HFs). We find that Wnt3a, which maintains the hair-generating activity of DP cells, is enriched and more strongly associated with hFB-EVs than with fibroblasts. Furthermore, hFB-EV-associated Wnt3a mediated receptor activation in cultured DP cells, leading to an increase in ß-catenin in the cytoplasm and its translocation into the nucleus, thereby elevating expression of the target genes Axin2 and Lef1. Additionally, hFB-EVs promoted the migration, proliferation, and differentiation of ORS cells and elongation of the hair shaft in human HFs. These findings revealed a novel mechanism by which hFB-EVs influence hair growth.


Asunto(s)
Proteína Axina/genética , Folículo Piloso/crecimiento & desarrollo , Factor de Unión 1 al Potenciador Linfoide/genética , beta Catenina/genética , Diferenciación Celular/genética , Proliferación Celular/genética , Células Cultivadas , Vesículas Extracelulares/genética , Fibroblastos/metabolismo , Folículo Piloso/metabolismo , Humanos , Proteínas Wnt/genética , Vía de Señalización Wnt/genética
13.
Front Cell Dev Biol ; 8: 575382, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117803

RESUMEN

Reciprocal interactions between hair-inductive dermal cells and epidermal cells are essential for de novo genesis of hair follicles. Recent studies have shown that outer root sheath (ORS) follicular keratinocytes can be expanded in vitro, but the cultured cells often lose receptivity to hair-inducing dermal signals. In this study, we first investigated whether the hair-inductive activity (trichogenicity) of cultured human ORS follicular keratinocytes was correlated with the cultivation period. ORS follicular keratinocytes from the scalp were cultured for 3, 4, 5, or 6 weeks and were then implanted into nude mice along with freshly isolated neonatal mouse dermal cells. We observed that the trichogenicity of the implanted ORS cells was inversely correlated with their cultivation period. These initial findings prompted us to investigate the differentially expressed genes between the short-term (20 days) and long-term (42 days) cultured ORS cells, trichogenic and non-trichogenic, respectively, by microarray analysis. We found that forkhead box protein A2 (FOXA2) was the most up-regulated transcription factor in the trichogenic ORS cells. Thus, we investigated whether the trichogenicity of the cells was affected by FOXA2 expression. We found a significant decrease in the number of induced hair follicles when the ORS cells were transfected with a FOXA2 small interfering RNA versus control small interfering RNA. Taken together, our data strongly suggest that FOXA2 significantly influences the trichogenicity of human ORS cells.

14.
Biochem Biophys Res Commun ; 529(3): 766-772, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32736705

RESUMEN

Androgenetic alopecia (AGA) is a common genetic disorder, and a X-chromosomal locus that contains the androgen receptor (AR) and ectodysplasin A2 receptor (EDA2R) genes represents a major susceptibility locus for AGA. In our previous study, we reported that ectodysplasin-A2 (EDA-A2) induces apoptosis in cultured human hair follicle (HF) cells and promotes the regression of HFs in mice. However, the role of the EDA-A2/EDA2R in AGA remains unknown, as the causative gene in this pathway has not yet been identified and potential functional connections between EDA-A2 signaling and the androgen pathway remain unclear. In this study, we investigated the expression of EDA2R in balding HFs and matched with non-balding HFs. The EDA2R level was upregulated in the balding dermal papilla (DP) cells compared with non-balding DP cells derived from patients with AGA. However, EDA2R was strongly expressed in both balding and non-balding outer root sheath (ORS) cells. We screened EDA-A2-regulated genes in balding DP cells and identified dickkopf 1 (DKK-1) as catagen inducer during the hair cycle. The mRNA and protein expression levels of DKK-1 were both upregulated by EDA-A2. In addition, DKK-1 expression was induced by EDA-A2 both in cultured human HFs and in mouse HFs. Moreover, the EDA-A2-induced apoptosis of DP and ORS cells was reversed by the antibody-mediated neutralization of DKK-1. Collectively, our data strongly suggest that EDA-A2 induces DKK-1 secretion and causes apoptosis in HFs by binding EDA2R, which is overexpressed in the bald scalp. EDA-A2/EDA2R signaling could inhibit hair growth through DKK-1 induction, and an inhibitor of EDA-A2/EDA2R signaling may be a promising agent for the treatment and prevention of AGA.


Asunto(s)
Alopecia/genética , Ectodisplasinas/metabolismo , Folículo Piloso/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Receptor Xedar/metabolismo , Alopecia/metabolismo , Apoptosis , Células Cultivadas , Folículo Piloso/citología , Humanos , Regulación hacia Arriba , Receptor Xedar/genética
15.
Cells ; 9(4)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244824

RESUMEN

Hair loss is a common medical problem affecting both males and females. Dermal papilla (DP) cells are the ultimate reservoir of cells with the potential of hair regeneration in hair loss patients. Here, we analyzed the role of macrophage-derived Wnts (3a and 7b) and macrophage extracellular vesicles (MAC-EVs) in promoting hair growth. We studied the proliferation, migration, and expression of growth factors of human-DP cells in the presence or absence of MAC-EVs. Additionally, we tested the effect of MAC-EV treatment on hair growth in a mouse model and human hair follicles. Data from western blot and flow cytometry showed that MAC-EVs were enriched with Wnt3a and Wnt7b, and more than 95% were associated with their membrane. The results suggest that Wnt proteins in MAC-EVs activate the Wnt/ß-catenin signaling pathways, which leads to activation of transcription factors (Axin2 and Lef1). The MAC-EVs significantly enhanced the proliferation, migration, and levels of hair-inductive markers of DP cells. Additionally, MAC-EVs phosphorylated AKT and increased the levels of the survival protein Bcl-2. The DP cells treated with MAC-EVs showed increased expression of vascular endothelial growth factor (VEGF) and keratinocyte growth factor (KGF). Treatment of Balb/c mice with MAC-EVs promoted hair follicle (HF) growth in vivo and also increased hair shaft size in a short period in human HFs. Our findings suggest that MAC-EV treatment could be clinically used as a promising novel anagen inducer in the treatment of hair loss.


Asunto(s)
Vesículas Extracelulares/metabolismo , Cabello/crecimiento & desarrollo , Macrófagos/metabolismo , Animales , Biomarcadores/metabolismo , Bovinos , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Endocitosis , Vesículas Extracelulares/ultraestructura , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Membranas Intracelulares/metabolismo , Macrófagos/citología , Macrófagos/ultraestructura , Ratones , Ratones Endogámicos BALB C , Células RAW 264.7 , Regulación hacia Arriba , Proteínas Wnt/metabolismo , Vía de Señalización Wnt
17.
Ann Dermatol ; 32(5): 388-394, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33911773

RESUMEN

BACKGROUND: Particulate matters (PM) comprise a heterogeneous mixture of particles suspended in air. A recent study found that urban PMs may penetrate into hair follicles via transfollicular and transdermal routes in dorsal skin. OBJECTIVE: To investigate the effects of PM on ex vivo cultured human scalp hair follicles and hair follicular keratinocytes in vitro. METHODS: TUNEL staining was employed to check cells undergoing apoptosis in cultured hair follicles after PM treatment. MTT assay was employed to check cell viability after PM treatment. Quantitative real-time PCR analysis was employed to quantitate the expression of inflammatory genes, matrix metalloproteinases (MMPs), and Duox1. Inflammatory cytokine levels were measured by ELISA after PM treatment. The level of reactive oxygen species (ROS) production was measured using a chemical fluorescent probe by a fluorescence plate reader. RESULTS: Abundant TUNEL-positive cells were observed in the keratinocyte region of hair including the epidermis, sebaceous gland, outer root sheath (ORS), inner root sheath (IRS), and bulb region. The viability of follicular cells, including the ORS, was found to be decreased upon PM exposure. mRNA expression and protein levels of inflammatory response genes and MMPs were upregulated in a dose-dependent manner by PM treatment. ROS levels were also increased by PM. CONCLUSION: These data strongly suggest that penetrated PMs from air pollution may cause apoptotic cell death to follicular keratinocytes by increased production of ROS and inflammatory cytokines, which could impair hair growth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...