Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 47(17): 9144-9159, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31350889

RESUMEN

The postreplication repair gene, HLTF, is often amplified and overexpressed in cancer. Here we model HLTF dysregulation through the functionally conserved Saccharomyces cerevisiae ortholog, RAD5. Genetic interaction profiling and landscape enrichment analysis of RAD5 overexpression (RAD5OE) reveals requirements for genes involved in recombination, crossover resolution, and DNA replication. While RAD5OE and rad5Δ both cause cisplatin sensitivity and share many genetic interactions, RAD5OE specifically requires crossover resolving genes and drives recombination in a region of repetitive DNA. Remarkably, RAD5OE induced recombination does not require other post-replication repair pathway members, or the PCNA modification sites involved in regulation of this pathway. Instead, the RAD5OE phenotype depends on a conserved domain necessary for binding 3' DNA ends. Analysis of DNA replication intermediates supports a model in which dysregulated Rad5 causes aberrant template switching at replication forks. The direct effect of Rad5 on replication forks in vivo, increased recombination, and cisplatin sensitivity predicts similar consequences for dysregulated HLTF in cancer.


Asunto(s)
ADN Helicasas/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Inestabilidad Genómica/genética , Recombinación Genética/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Cisplatino/farmacología , Intercambio Genético/genética , Daño del ADN/efectos de los fármacos , Reparación del ADN/genética , Replicación del ADN/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias/genética , Saccharomyces cerevisiae/genética
2.
Genetics ; 204(2): 807-819, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27558135

RESUMEN

The CKS1B gene located on chromosome 1q21 is frequently amplified in breast, lung, and liver cancers. CKS1B codes for a conserved regulatory subunit of cyclin-CDK complexes that function at multiple stages of cell cycle progression. We used a high throughput screening protocol to mimic cancer-related overexpression in a library of Saccharomyces cerevisiae mutants to identify genes whose functions become essential only when CKS1 is overexpressed, a synthetic dosage lethal (SDL) interaction. Mutations in multiple genes affecting mitotic entry and mitotic exit are highly enriched in the set of SDL interactions. The interactions between Cks1 and the mitotic entry checkpoint genes require the inhibitory activity of Swe1 on the yeast cyclin-dependent kinase (CDK), Cdc28. In addition, the SDL interactions of overexpressed CKS1 with mutations in the mitotic exit network are suppressed by modulating expression of the CDK inhibitor Sic1. Mutation of the polo-like kinase Cdc5, which functions in both the mitotic entry and mitotic exit pathways, is lethal in combination with overexpressed CKS1 Therefore we investigated the effect of targeting the human Cdc5 ortholog, PLK1, in breast cancers with various expression levels of human CKS1B Growth inhibition by PLK1 knockdown correlates with increased CKS1B expression in published tumor cell data sets, and this correlation was confirmed using shRNAs against PLK1 in tumor cell lines. In addition, we overexpressed CKS1B in multiple cell lines and found increased sensitivity to PLK1 knockdown and PLK1 drug inhibition. Finally, combined inhibition of WEE1 and PLK1 results in less apoptosis than predicted based on an additive model of the individual inhibitors, showing an epistatic interaction and confirming a prediction of the yeast data. Thus, identification of a yeast SDL interaction uncovers conserved genetic interactions that can affect human cancer cell viability.


Asunto(s)
Quinasas CDC2-CDC28/genética , Proteínas de Ciclo Celular/genética , Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/genética , Quinasas CDC2-CDC28/biosíntesis , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/biosíntesis , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/biosíntesis , Línea Celular Tumoral , Secuencia Conservada/genética , Regulación Fúngica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Mitosis/genética , Neoplasias/metabolismo , Proteínas Nucleares/biosíntesis , Mapeo de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Tirosina Quinasas/biosíntesis , Proteínas Proto-Oncogénicas/biosíntesis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Mutaciones Letales Sintéticas/genética , Quinasa Tipo Polo 1
3.
DNA Repair (Amst) ; 12(9): 786-90, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23790361

RESUMEN

The Shu complex, consisting of Rad51 paralogues, is an important regulator of homologous recombination, an error-free DNA repair pathway. Consequently, when members of this complex are disrupted, cells exhibit a mutator phenotype, sensitivity to DNA damage reagents and increased gross chromosomal rearrangements. Previously, we found that the Shu complex plays an important role in ribosomal DNA (rDNA) recombination when the Upstream Activating Factor (UAF) protein Uaf30 is disrupted. UAF30 encodes a protein needed for rDNA transcription and when deleted, rDNA recombination increases and the rDNA expands in a Shu1-dependent manner. Here we find using the uaf30-sensitized background that the central DNA repair protein Rad52, which is normally excluded from the nucleolus, frequently overlaps with the rDNA. This close association of Rad52 with the rDNA is dependent upon Shu1 in a uaf30 mutant. Previously, it was shown that in the absence of Rad52 sumoylation, Rad52 foci mislocalize to the nucleolus. Interestingly, here we find that using the uaf30 sensitized background the ability to regulate Rad52 sumoylation is important for Shu1 dependent rDNA recombination as well as Rad52 close association with rDNA. Our results suggest that in the absence of UAF30, the Shu complex plays a central role in Rad52 rDNA localization as long as Rad52 can be sumoylated. This discrimination is important for rDNA copy number homeostasis.


Asunto(s)
ADN de Hongos/genética , ADN Ribosómico/genética , Proteínas Nucleares/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Reparación del ADN , ADN de Hongos/metabolismo , ADN Ribosómico/metabolismo , Técnicas de Inactivación de Genes , Transporte de Proteínas , Recombinación Genética , Saccharomyces cerevisiae/genética , Sumoilación
4.
Mol Biol Cell ; 22(9): 1599-607, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21372173

RESUMEN

The Shu complex, which contains RAD51 paralogues, is involved in the decision between homologous recombination and error-prone repair. We discovered a link to ribosomal DNA (rDNA) recombination when we found an interaction between one member of the Shu complex, SHU1, and UAF30, a component of the upstream activating factor complex (UAF), which regulates rDNA transcription. In the absence of Uaf30, rDNA copy number increases, and this increase depends on several functional subunits of the Shu complex. Furthermore, in the absence of Uaf30, we find that Shu1 and Srs2, an anti-recombinase DNA helicase with which the Shu complex physically interacts, act in the same pathway regulating rDNA recombination. In addition, Shu1 modulates Srs2 recruitment to both induced and spontaneous foci correlating with a decrease in Rad51 foci, demonstrating that the Shu complex is an important regulator of Srs2 activity. Last, we show that Shu1 regulation of Srs2 to double-strand breaks is not restricted to the rDNA, indicating a more general function for the Shu complex in the regulation of Srs2. We propose that the Shu complex shifts the balance of repair toward Rad51 filament stabilization by inhibiting the disassembly reaction of Srs2.


Asunto(s)
ADN Helicasas/metabolismo , Reparación del ADN , ADN de Hongos/genética , Proteínas Nucleares/metabolismo , Recombinasa Rad51/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ADN Helicasas/genética , ADN Ribosómico/genética , Proteínas Nucleares/genética , Plásmidos/genética , Recombinasa Rad51/genética , Recombinación Genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo
5.
Genome Res ; 21(3): 477-86, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21173034

RESUMEN

We have streamlined the process of transferring plasmids into any yeast strain library by developing a novel mating-based, high-throughput method called selective ploidy ablation (SPA). SPA uses a universal plasmid donor strain that contains conditional centromeres on every chromosome. The plasmid-bearing donor is mated to a recipient, followed by removal of all donor-strain chromosomes, producing a haploid strain containing the transferred plasmid. As proof of principle, we used SPA to transfer plasmids containing wild-type and mutant alleles of DNA topoisomerase I (TOP1) into the haploid yeast gene-disruption library. Overexpression of Top1 identified only one sensitive mutation, rpa34, while overexpression of top1-T(722)A allele, a camptothecin mimetic, identified 190 sensitive gene-disruption strains along with rpa34. In addition to known camptothecin-sensitive strains, this set contained mutations in genes involved in the Rpd3 histone deacetylase complex, the kinetochore, and vesicle trafficking. We further show that mutations in several ESCRT vesicle trafficking components increase Top1 levels, which is dependent on SUMO modification. These findings demonstrate the utility of the SPA technique to introduce plasmids into the haploid gene-disruption library to discover new interacting pathways.


Asunto(s)
ADN-Topoisomerasas de Tipo I/metabolismo , Redes Reguladoras de Genes , Ensayos Analíticos de Alto Rendimiento/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alelos , Camptotecina/farmacología , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , ADN-Topoisomerasas de Tipo I/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Expresión Génica , Biblioteca Genómica , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Mutación , Plásmidos/genética , Ploidias , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Transformación Genética
6.
DNA Repair (Amst) ; 9(1): 23-32, 2010 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-19892607

RESUMEN

Spontaneous mitotic recombination is a potential source of genetic changes such as loss of heterozygosity and chromosome translocations, which may lead to genetic disease. In this study we have used a rad52 hyper-recombination mutant, rad52-Y66A, to investigate the process of spontaneous heteroallelic recombination in the yeast Saccharomyces cerevisiae. We find that spontaneous recombination has different genetic requirements, depending on whether the recombination event occurs between chromosomes or between chromosome and plasmid sequences. The hyper-recombination phenotype of the rad52-Y66A mutation is epistatic with deletion of MRE11, which is required for establishment of DNA damage-induced cohesion. Moreover, single-cell analysis of strains expressing YFP-tagged Rad52-Y66A reveals a close to wild-type frequency of focus formation, but with foci lasting 6 times longer. This result suggests that spontaneous DNA lesions that require recombinational repair occur at the same frequency in wild-type and rad52-Y66A cells, but that the recombination process is slow in rad52-Y66A cells. Taken together, we propose that the slow recombinational DNA repair in the rad52-Y66A mutant leads to a by-pass of the window-of-opportunity for sister chromatid recombination normally promoted by MRE11-dependent damage-induced cohesion thereby causing a shift towards interchromosomal recombination.


Asunto(s)
Cromosomas Fúngicos , Reparación del ADN , ADN de Hongos/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Moldes Genéticos , Alelos , Daño del ADN , ADN de Hongos/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Mutación , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
EMBO J ; 28(7): 915-25, 2009 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-19214189

RESUMEN

Mutations in human homologues of the bacterial RecQ helicase cause diseases leading to cancer predisposition and/or shortened lifespan (Werner, Bloom, and Rothmund-Thomson syndromes). The budding yeast Saccharomyces cerevisiae has one RecQ helicase, Sgs1, which functions with Top3 and Rmi1 in DNA repair. Here, we report separation-of-function alleles of SGS1 that suppress the slow growth of top3Delta and rmi1Delta cells similar to an SGS1 deletion, but are resistant to DNA damage similar to wild-type SGS1. In one allele, the second acidic region is deleted, and in the other, only a single aspartic acid residue 664 is deleted. sgs1-D664Delta, unlike sgs1Delta, neither disrupts DNA recombination nor has synthetic growth defects when combined with DNA repair mutants. However, during S phase, it accumulates replication-associated X-shaped structures at damaged replication forks. Furthermore, fluorescent microscopy reveals that the sgs1-D664Delta allele exhibits increased spontaneous RPA foci, suggesting that the persistent X-structures may contain single-stranded DNA. Taken together, these results suggest that the Sgs1 function in repair of DNA replication intermediates can be uncoupled from its role in homologous recombinational repair.


Asunto(s)
Reparación del ADN/fisiología , Replicación del ADN/fisiología , RecQ Helicasas/fisiología , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/fisiología , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Microscopía Fluorescente , Mutación , Fenotipo , RecQ Helicasas/genética , Proteína de Replicación A , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Genetics ; 180(4): 1799-808, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18832360

RESUMEN

We have created a resource to rapidly map genetic traits to specific chromosomes in yeast. This mapping is done using a set of 16 yeast strains each containing a different chromosome with a conditionally functional centromere. Conditional centromere function is achieved by integration of a GAL1 promoter in cis to centromere sequences. We show that the 16 yeast chromosomes can be individually lost in diploid strains, which become hemizygous for the destabilized chromosome. Interestingly, most 2n - 1 strains endoduplicate and become 2n. We also demonstrate how chromosome loss in this set of strains can be used to map both recessive and dominant markers to specific chromosomes. In addition, we show that this method can be used to rapidly validate gene assignments from screens of strain libraries such as the yeast gene disruption collection.


Asunto(s)
Cromosomas Fúngicos/genética , Saccharomyces cerevisiae/genética , Mapeo Cromosómico , Diploidia , Pérdida de Heterocigocidad , Meiosis , Modelos Genéticos , Fenotipo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Nat Cell Biol ; 9(8): 923-31, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17643116

RESUMEN

Homologous recombination (HR) is crucial for maintaining genome integrity by repairing DNA double-strand breaks (DSBs) and rescuing collapsed replication forks. In contrast, uncontrolled HR can lead to chromosome translocations, loss of heterozygosity, and deletion of repetitive sequences. Controlled HR is particularly important for the preservation of repetitive sequences of the ribosomal gene (rDNA) cluster. Here we show that recombinational repair of a DSB in rDNA in Saccharomyces cerevisiae involves the transient relocalization of the lesion to associate with the recombination machinery at an extranucleolar site. The nucleolar exclusion of Rad52 recombination foci entails Mre11 and Smc5-Smc6 complexes and depends on Rad52 SUMO (small ubiquitin-related modifier) modification. Remarkably, mutations that abrogate these activities result in the formation of Rad52 foci within the nucleolus and cause rDNA hyperrecombination and the excision of extrachromosomal rDNA circles. Our study also suggests a key role of sumoylation for nucleolar dynamics, perhaps in the compartmentalization of nuclear activities.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Reparación del ADN , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Recombinación Genética , Ribosomas/genética , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Nucléolo Celular/metabolismo , Daño del ADN , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína SUMO-1/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
10.
Yeast ; 23(14-15): 1097-106, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17083134

RESUMEN

We have developed a new method, systematic hybrid loss of heterozygosity, to facilitate genomic screens utilizing the yeast gene deletion library. Screening is performed using hybrid diploid strains produced through mating the library haploids with strains from a different genetic background, to minimize the contribution of unpredicted recessive genetic factors present in the individual library strains. We utilize a set of strains where each contains a conditional centromere construct on one of the 16 yeast chromosomes that allows the destabilization and selectable loss of that chromosome. After mating a library gene deletion haploid to such a conditional centromere strain, which corresponds to the chromosome carrying the gene deletion, loss of heterozygosity (LOH) at the gene deletion locus can be generated in these otherwise hybrid diploids. The use of hybrid diploid strains permits complementation of any spurious recessive mutations in the library strain, facilitating attribution of the observed phenotype to the documented gene deletion and dramatically reducing false positive results commonly obtained in library screens. The systematic hybrid LOH method can be applied to virtually any screen utilizing the yeast non-essential gene deletion library and is particularly useful for screens requiring the introduction of a genetic assay into the library strains.


Asunto(s)
Eliminación de Gen , Pruebas Genéticas/métodos , Genoma Fúngico , Biblioteca Genómica , Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos , Proteínas Bacterianas/genética , Aberraciones Cromosómicas , Diploidia , Haploidia , Pérdida de Heterocigocidad , Proteínas Luminiscentes/genética , Mutación , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Mol Cell Biol ; 26(10): 3752-63, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16648471

RESUMEN

The RAD52 gene is essential for homologous recombination in the yeast Saccharomyces cerevisiae. RAD52 is the archetype in an epistasis group of genes essential for DNA damage repair. By catalyzing the replacement of replication protein A with Rad51 on single-stranded DNA, Rad52 likely promotes strand invasion of a double-stranded DNA molecule by single-stranded DNA. Although the sequence and in vitro functions of mammalian RAD52 are conserved with those of yeast, one difference is the presence of introns and consequent splicing of the mammalian RAD52 pre-mRNA. We identified two novel splice variants from the RAD52 gene that are expressed in adult mouse tissues. Expression of these splice variants in tissue culture cells elevates the frequency of recombination that uses a sister chromatid template. To characterize this dominant phenotype further, the RAD52 gene from the yeast Saccharomyces cerevisiae was truncated to model the mammalian splice variants. The same dominant sister chromatid recombination phenotype seen in mammalian cells was also observed in yeast. Furthermore, repair from a homologous chromatid is reduced in yeast, implying that the choice of alternative repair pathways may be controlled by these variants. In addition, a dominant DNA repair defect induced by one of the variants in yeast is suppressed by overexpression of RAD51, suggesting that the Rad51-Rad52 interaction is impaired.


Asunto(s)
Empalme Alternativo , Reparación del ADN , Variación Genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Intercambio de Cromátides Hermanas , Células 3T3 , Alelos , Secuencia de Aminoácidos , Animales , Células CHO , Cricetinae , Exones , Citometría de Flujo , Rayos gamma , Frecuencia de los Genes , Genes Dominantes , Intrones , Ratones , Datos de Secuencia Molecular , Proteína Recombinante y Reparadora de ADN Rad52/química , Proteína Recombinante y Reparadora de ADN Rad52/genética , Recombinación Genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/efectos de la radiación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido
12.
Genome Res ; 14(4): 733-41, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15060017

RESUMEN

The rat is an important animal model for human diseases and is widely used in physiology. In this article we present a new strategy for gene discovery based on the production of ESTs from serially subtracted and normalized cDNA libraries, and we describe its application for the development of a comprehensive nonredundant collection of rat ESTs. Our new strategy appears to yield substantially more EST clusters per ESTs sequenced than do previous approaches that did not use serial subtraction. However, multiple rounds of library subtraction resulted in high frequencies of otherwise rare internally primed cDNAs, defining the limits of this powerful approach. To date, we have generated >200,000 3' ESTs from >100 cDNA libraries representing a wide range of tissues and developmental stages of the laboratory rat. Most importantly, we have contributed to approximately 50,000 rat UniGene clusters. We have identified, arrayed, and derived 5' ESTs from >30,000 unique rat cDNA clones. Complete information, including radiation hybrid mapping data, is also maintained locally at http://genome.uiowa.edu/clcg.html. All of the sequences described in this article have been submitted to the dbEST division of the NCBI.


Asunto(s)
Genes/genética , Animales , ADN Complementario/genética , Etiquetas de Secuencia Expresada , Femenino , Biblioteca de Genes , Humanos , Masculino , Ratones , Poliadenilación/genética , Procesamiento Postranscripcional del ARN/genética , Ratas , Ratas Sprague-Dawley , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ADN/estadística & datos numéricos , Programas Informáticos
13.
Yeast ; 19(4): 319-28, 2002 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-11870855

RESUMEN

Gene disruptions are a vital tool for understanding Saccharomyces cerevisiae gene function. An arrayed library of gene disruption strains has been produced by a consortium of yeast laboratories; however their use is limited to a single genetic background. Since the yeast research community works with several different strain backgrounds, disruption libraries in other common laboratory strains are desirable. We have developed simple PCR-based methods that allow transfer of gene disruptions from the S288C-derived strain library into any Saccharomyces strain. One method transfers the unique sequence tags that flank each of the disrupted genes and replaces the kanamycin resistance marker with a recyclable URA3 gene from Kluyveromyces lactis. All gene-specific PCR amplifications for this method are performed using a pre-existing set of primers that are commercially available. We have also extended this PCR technique to develop a second general gene disruption method suitable for any transformable strain of Saccharomyces.


Asunto(s)
Reacción en Cadena de la Polimerasa/métodos , Saccharomyces cerevisiae/genética , Cartilla de ADN , Eliminación de Gen , Kluyveromyces/genética , Biología Molecular , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...