Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Naturwissenschaften ; 110(6): 52, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37889338

RESUMEN

Anthropogenic land use and climate change are the greatest threats to biodiversity, especially for many globally endangered reptile species. Earth snakes (Conopsis spp.) are a poorly studied group endemic to Mexico. They have limited dispersal abilities and specialized niches, making them particularly vulnerable to anthropogenic threats. Species distribution models (SDMs) were used to assess how future climate and land-cover change scenarios might influence the distribution and habitat connectivity of three earth snakes: Conopsis biserialis (Taylor and Smith), C. lineata (Kennicott), and C. nasus (Günther). Two climate models, CNRM-CM5 (CN) and MPI-ESM-LR (MP) (Representative Concentration Pathway 85), were explored with ENMeval Maxent modelling. Important SDM environmental variables and environmental niche overlap between species were also examined. We found that C. biserialis and C. lineata were restricted by maximum temperatures whereas C. nasus was restricted by minimum ones and was more tolerant to arid vegetation. C. biserialis and C. lineata were primarily distributed in the valleys and mountains of the highlands of the TMBV, while C. nasus was mainly distributed in the Altiplano Sur (Zacatecano-Potosino). C. lineata had the smallest potential distribution and suffered the greatest contraction in the future whereas C. nasus was the least affected species in future scenarios. The Sierra de las Cruces and the Sierra Chichinautzin were identified as very important areas for connectivity. Our results suggest that C. lineata may be the most vulnerable of the three species to anthropogenic and climate changes whereas C. nasus seems to be less affected by global warming than the other species.


Asunto(s)
Biodiversidad , Ecosistema , México , Cambio Climático
2.
Environ Manage ; 70(6): 965-977, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36038650

RESUMEN

Habitat loss is one of the most important threats to biodiversity; it alters the habitat connectivity of species and is among the main causes of the global amphibian extinction crisis. Identifying the potential areas of distribution and connectivity of species is of the utmost importance so that informed decisions can be made for the conservation of vulnerable amphibian populations. In this study, we performed species distribution models and used circuit theory to model omnidirectional connectivity for two plethodontid salamanders of conservation concern distributed in the forests of Chiapas, Mexico, and Guatemala (Bolitoglossa franklini and Bolitoglossa lincolni). Potential distribution maps show an affinity for well-preserved montane forests for both species. Likewise, we found that the niches of the species are not similar. The connectivity models show that the main areas of connectivity are in the Meseta Central de Chiapas, Sierra Madre de Chiapas, and the Cordillera Volcánica Guatemalense, in this last range, important areas of connectivity were located, as well as least-cost paths and barriers to the movement of both species. We identified that important areas of climatic suitability and connectivity are not within the protected natural areas and may be threatened by the increasing influence of anthropogenic activities. The results of our study show the importance of preserving the regional forests to ensure the persistence of species with arboreal habits and high sensitivity to habitat transformation, as well as to recognize and prioritize potential areas for management and protection in both southern Mexico and Guatemala.


Asunto(s)
Conservación de los Recursos Naturales , Urodelos , Animales , Conservación de los Recursos Naturales/métodos , México , Guatemala , Biodiversidad , Ecosistema
3.
Genetica ; 147(2): 149-164, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30879155

RESUMEN

Land use changes are threatening the maintenance of biodiversity. Genetic diversity is one of the main indicators of biological diversity and is highly important as it shapes the capability of populations to respond to environmental changes. We studied eleven populations of Pseudoeurycea robertsi, a micro-endemic and critically endangered species from the Nevado de Toluca Volcano, a mountain that is part of the Trans-Mexican Volcanic Belt, Mexico. We sequenced the mitochondrial cytochrome b gene from 71 individuals and genotyped 9 microsatellites from 150 individuals. Our results based on the cytochrome b showed two divergent lineages, with moderate levels of genetic diversity and a recently historical demographic expansion. Microsatellite-based results indicated low levels of heterozygosity for all populations and few alleles per locus, as compared with other mole salamander species. We identified two genetically differentiated subpopulations with a significant level of genetic structure. These results provide fundamental data for the development of management plans and conservation efforts for this critically endangered species.


Asunto(s)
Especies en Peligro de Extinción , Polimorfismo Genético , Urodelos/genética , Animales , Ecosistema , Repeticiones de Microsatélite
4.
J Genet ; 97(5): 1119-1130, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30555061

RESUMEN

The isolated and fragmented populations are highly susceptible to stochastic events, increasing the extinction risk because of the decline in putative adaptive potential and individual fitness. The population has high heterozygosity values and a moderate allelic diversity, the heterozygosity values are higher than in most other Crotalus species and snake studies. Possibly these high levels of genetic diversity can be related to a large founder size, high effective population size, multiple paternity and overlapping generations. We did not find the genetic structuring but the effective number of alleles (Ne) was 138.1. We found evidence of bottlenecks and the majority of rattlesnakeswere unrelated, despite the small sample size, endemic status, the isolated and fragmented habitat. The genetic information provided in this study can be useful as a first approach to try to make informed conservation efforts for this species and also, important to preserve the habitat of this species; the endangered Abies-Pinus forest of the Nevado the Toluca Volcano.


Asunto(s)
Crotalus/genética , Flujo Génico , Variación Genética , Genética de Población , Repeticiones de Microsatélite , Densidad de Población , Animales , Ecosistema , Frecuencia de los Genes , México , Filogenia
5.
PeerJ ; 6: e4618, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29666767

RESUMEN

Land use and climate change are affecting the abundance and distribution of species. The Trans-Mexican Volcanic Belt (TMVB) is a very diverse region due to geological history, geographic position, and climate. It is also one of the most disturbed regions in Mexico. Reptiles are particularly sensitive to environmental changes due to their low dispersal capacity and thermal ecology. In this study, we define the important environmental variables (considering climate, topography, and land use) and potential distribution (present and future) of the five Thamnophis species present in TMVB. To do so, we used the maximum entropy modeling software (MAXENT). First, we modeled to select the most important variables to explain the distribution of each species, then we modeled again using only the most important variables and projected these models to the future considering a middle-moderate climate change scenario (rcp45), and land use and vegetation variables for the year 2050 (generated according to land use changes that occurred between years 2002 and 2011). Arid vegetation had an important negative effect on habitat suitability for all species, and minimum temperature of the coldest month was important for four of the five species. Thamnophis cyrtopsis was the species with the lowest tolerance to minimum temperatures. The maximum temperature of the warmest month was important for T. scalaris and T. cyrtopsis. Low percentages of agriculture were positive for T. eques and T. melanogaster but, at higher values, agriculture had a negative effect on habitat suitability for both species. Elevation was the most important variable to explain T. eques and T. melanogaster potential distribution while distance to Abies forests was the most important variable for T. scalaris and T. scaliger. All species had a high proportion of their potential distribution in the TMVB. However, according to our models, all Thamnophis species will experience reductions in their potential distribution in this region. T. scalaris will suffer the biggest reduction because this species is limited by high temperatures and will not be able to shift its distribution upward, as it is already present in the highest elevations of the TMVB.

6.
J Genet ; 96(6): 873-883, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29321345

RESUMEN

Amphibians are globally threatened by habitat loss and fragmentation; species within the order Ambystoma are not the exception, as there are 18 species of mole salamanders in México, of which 16 are endemic and all species are under some national or international status of protection. The mole salamander, Ambystoma altamirani is a microendemic species, which is distributed in central México, within the trans-Mexican volcanic belt, and is one of the most threatened species due to habitat destruction and the introduction of exotic species. Nine microsatellite markers were used to determine the genetic structure, genetic variability, effective population size, presence of bottlenecks and inbreeding coefficient of one population of A. altamirani to generate information which might help to protect and conserve this threatened species. We found two genetic subpopulations with significant level of genetic structure (FST = 0.005) and high levels of genetic variability (Ho = 0.883; He = 0.621); we also found a small population size (Ne = 8.8), the presence of historical (M = 0.486) and recent bottlenecks under IAM and TPM models, with a low, but significant coefficient of inbreeding (FIS = -0.451). This information will help us to raise conservation strategies of this microendemic mole salamander species.


Asunto(s)
Ambystomatidae/genética , Variación Genética , Genética de Población , Animales , Ecosistema , Especies en Peligro de Extinción , Flujo Génico , Endogamia , México , Repeticiones de Microsatélite/genética , Densidad de Población
7.
Genetica ; 144(6): 689-698, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27796527

RESUMEN

Human activities are affecting the distribution of species worldwide by causing fragmentation and isolation of populations. Isolation and fragmentation lead to populations with lower genetic variability and an increased chance of inbreeding and genetic drift, which results in a loss of biological fitness over time. Studies of the genetic structure of small and isolated populations are critically important for management and conservation decisions. Ambystoma rivulare is a micro-endemic Mexican mole salamander from central Mexico. It is found in the most ecologically disturbed region in Mexico, the Trans-Mexican Volcanic Belt. The goal of this study of the population genetics of the micro-endemic mole salamander was to provide information to be used as a basis for future research and conservation planning of this species and other species of the Ambystoma genus in Mexico. The structural analysis found two subpopulations, one for each river sampled, with no signs of admixture and very high levels of genetic differentiation. Medium to high levels of heterozygosity and few alleles and genotypes were observed. Evidence of an ancestral genetic bottleneck, low values of effective population size, small inbreeding coefficients, and low gene flow were also found.


Asunto(s)
Ambystomatidae/genética , Variación Genética , Animales , Conservación de los Recursos Naturales , Flujo Génico , México , Filogenia , Densidad de Población
8.
Genetica ; 144(1): 59-69, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26790662

RESUMEN

Genealogical records of animals (studbook) are created to avoid reproduction between closely related individuals, which could cause inbreeding, particularly for such endangered species as the Panthera onca (Linnaeus, 1758). Jaguar is the largest felid in the Americas and is considered an important ecological key species. In Mexico, wild jaguar populations have been significantly reduced in recent decades, and population decline typically accompany decreases in genetic variation. There is no current census of captive jaguars in Mexico, and zoos do not follow a standardized protocol in breeding programs based on genetic studies. Here, we emphasise the importance of maintaining an adequate level of genetic variation and propose the implementation of standardised studbooks for jaguars in Mexico, mainly to avoid inbreeding. In addition, achieving the aims of studbook registration would provide a population genetic characterisation that could serve as a basis for ex situ conservation programmes.


Asunto(s)
Conservación de los Recursos Naturales , Variación Genética , Genética de Población , Panthera/genética , Animales , Animales de Zoológico/genética , Cruzamiento , Genotipo , México , Linaje , Densidad de Población , Análisis de Secuencia de ADN
9.
Genetica ; 143(6): 705-16, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26497875

RESUMEN

It is necessary to determine genetic diversity of fragmented populations in highly modified landscapes to understand how populations respond to land-use change. This information will help guide future conservation and management strategies. We conducted a population genetic study on an endemic Mexican Dusky Rattlesnake (Crotalus triseriatus) in a highly modified landscape near the Toluca metropolitan area, in order to provide crucial information for the conservation of this species. There was medium levels of genetic diversity, with a few alleles and genotypes. We identified three genetically differentiated clusters, likely as a result of different habitat cover type. We also found evidence of an ancestral genetic bottleneck and medium values of effective population size. Inbreeding coefficients were low and there was a moderate gene flow. Our results can be used as a basis for future research and C. triseriatus conservation efforts, particularly considering that the Trans-Mexican Volcanic Belt is heavily impacted by destructive land-use practices.


Asunto(s)
Crotalus/genética , Agricultura , Animales , Conservación de los Recursos Naturales , Flujo Génico , Variación Genética , Endogamia , México , Densidad de Población
10.
PLoS One ; 9(7): e103595, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25076052

RESUMEN

The reduced immigration and emigration rates resulting from the lack of landscape connectivity of patches and the hospitality of the intervening matrix could favor the loss of alleles through genetic drift and an increased chance of inbreeding. In order for isolated populations to maintain sufficient levels of genetic diversity and adapt to environmental changes, one important conservation goal must be to preserve or reestablish connectivity among patches in a fragmented landscape. We studied the last known population of Ambystoma leorae, an endemic and critically threatened species. The aims of this study were: (1) to assess the demographic parameters of A. leorae and to distinguish and characterize the microhabitats in the river, (2) to determine the number of existing genetic groups or demes of A. leorae and to describe possible relationships between microhabitats types and demes, (3) to determine gene flow between demes, and (4) to search for geographic locations of genetic discontinuities that limit gene flow between demes. We found three types of microhabitats and three genetically differentiated subpopulations with a significant level of genetic structure. In addition, we found slight genetic barriers. Our results suggest that mole salamander's species are very sensitive to microhabitat features and relatively narrow obstacles in their path. The estimates of bidirectional gene flow are consistent with the pattern of a stepping stone model between demes, where migration occurs between adjacent demes, but there is low gene flow between distant demes. We can also conclude that there is a positive correlation between microhabitats and genetic structure in this population.


Asunto(s)
Ambystoma/genética , Alelos , Ambystomatidae , Distribución Animal , Animales , Análisis por Conglomerados , Ecosistema , Especies en Peligro de Extinción , Flujo Génico , Flujo Genético , Variación Genética , Endogamia , México , Repeticiones de Microsatélite , Modelos Genéticos , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...