Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(4): e0265505, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35427369

RESUMEN

In vivo and in vitro anti-allergic activities of ethanol extract of Xenostegia tridentata (L.) D.F. Austin & Staples were investigated using passive cutaneous anaphylaxis reaction assay and RBL-2H3 cell degranulation assay, respectively. The crude ethanol extract exhibited promising activities when compared with the known anti-allergic agents, namely dexamethasone and ketotifen fumarate. The ethyl acetate subfraction showed the highest anti-allergic activity among various sub-partitions and showed better activity than the crude extract, consistent with the high abundance of total phenolic and flavonoid contents in this subfraction. LC-MS/MS metabolomics analysis and bioassay-guided isolation were then used to identify chemical constituents responsible for the anti-allergic activity. The results showed that major components of the ethyl acetate subfraction consist of 3,5-dicaffeoylquinic acid, quercetin-3-O-rhamnoside, kaempferol-3-O-rhamnoside and luteolin-7-O-glucoside. The inhibitory activity of the isolated compounds against mast cell degranulation was validated, ensuring their important roles in the anti-allergic activity of the plant. Notably, besides showing the anti-allergic activity of X. tridentata, this work highlights the role of metabolomic analysis in identifying and selectively isolating active metabolites from plants.


Asunto(s)
Antialérgicos , Antialérgicos/farmacología , Cromatografía Liquida , Etanol , Metabolómica , Extractos Vegetales/química , Espectrometría de Masas en Tándem
2.
Fungal Biol ; 126(2): 162-173, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35078587

RESUMEN

Since the increasing prevalence of herbicide-resistant weeds and herbicide bans, the use of biological controls with mycoherbicides become an innovative approach of weed control. In this study, we verified the pathogenicity of Phoma multirostrata TBRC 12769 against the common weed in Thailand, tridax daisy (Tridax procumbens), with its mechanism of infection unveiled by fluorescence microscopy. P. multirostrata directly penetrated through epidermal cells, stomata, and trichomes at 48 h post-inoculation. The hyphae also propagated in the lumen of the trichome, enabling the fungus to grow subcuticular to neighboring weed tissues at the bases of leaf trichomes. The necrotic pattern emerged around the trichome. During necrosis, unicellular chlamydospores were also detected inside the leaf trichomes, suggesting an overwintering stage under stress and nutrient-depleting conditions. Trichomes of weed leaves were found to be key infection sites for pathogenesis. Topical application of conidial suspension on T. procumbens potted plants led to 60-98% and 65 and 87% disease incidence under laboratory and greenhouse conditions, respectively, on days 15-20 post-inoculation. The 16-h dew period incubation results in a sharp increase by 37% in the pathogenicity rate. The greenhouse trials verified that the fungus is non-pathogenic to eight crops. Our LC-MS analysis indicated that norharman, a known bioherbicidal compound, and other compounds were detected in the supernatant fraction of fungal culture, of which resulted in a blight symptom on T. procumbens leaves. This study demonstrated that the P. multirostrata isolate is an effective mycoherbicide for this broadleaf weed.


Asunto(s)
Ascomicetos , Herbicidas , Herbicidas/farmacología , Malezas , Control de Malezas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA