Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0303567, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38776323

RESUMEN

Spermatozoa cryopreservation has been practiced for decades and is a very useful technique for long-term preservation of sperm fertility. The capability for semen cryopreservation varies across species, seasons, latitudes, and even for different ejaculates from the same animal. This article summarizes research results on sperm cryotolerance biomarkers in several species, focusing on three areas: spermatozoa cryotolerance biomarkers, seminal plasma proteins cryotolerance biomarkers, and other cryotolerance biomarkers. We discovered that sperm cryoresistance biomarkers are primarily related to sperm plasma membrane stability, the presence of antioxidant substances in sperm or seminal plasma, sperm cell energy metabolism, water and small molecule transport channels in the sperm plasma membrane, and antistress substances in sperm or seminal plasma. The research conducted using diverse livestock models can be employed to enhance the basic and applied reproduction of other mammals through the study of sperm cryotolerance biomarkers, as well as the substantial similarities between livestock and other organisms, including endangered species.


Asunto(s)
Biomarcadores , Criopreservación , Preservación de Semen , Semen , Espermatozoides , Criopreservación/métodos , Masculino , Biomarcadores/metabolismo , Preservación de Semen/métodos , Animales , Semen/metabolismo , Espermatozoides/metabolismo , Humanos , Membrana Celular/metabolismo
2.
Energy Environ Sci ; 17(4): 1549-1558, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38384422

RESUMEN

Chemical environment and precursor-coordinating molecular interactions within a perovskite precursor solution can lead to important implications in structural defects and crystallization kinetics of a perovskite film. Thus, the opto-electronic quality of such films can be boosted by carefully fine-tuning the coordination chemistry of perovskite precursors via controllable introduction of additives, capable of forming intermediate complexes. In this work, we employed a new type of ligand, namely 1-phenylguanidine (PGua), which coordinates strongly with the PbI2 complexes in the perovskite precursor, forming new intermediate species. These strong interactions effectively retard the perovskite crystallization process and form homogeneous films with enlarged grain sizes and reduced density of defects. In combination with an interfacial treatment, the resulted champion devices exhibit a 24.6% efficiency with outstanding operational stability. Unprecedently, PGua can be applied in various PSCs with different perovskite compositions and even in both configurations: n-i-p and p-i-n, highlighting the universality of this ligand.

3.
Nat Energy ; 9(2): 172-183, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38419691

RESUMEN

The stabilization of grain boundaries and surfaces of the perovskite layer is critical to extend the durability of perovskite solar cells. Here we introduced a sulfonium-based molecule, dimethylphenethylsulfonium iodide (DMPESI), for the post-deposition treatment of formamidinium lead iodide perovskite films. The treated films show improved stability upon light soaking and remains in the black α phase after two years ageing under ambient condition without encapsulation. The DMPESI-treated perovskite solar cells show less than 1% performance loss after more than 4,500 h at maximum power point tracking, yielding a theoretical T80 of over nine years under continuous 1-sun illumination. The solar cells also display less than 5% power conversion efficiency drops under various ageing conditions, including 100 thermal cycles between 25 °C and 85 °C and an 1,050-h damp heat test.

5.
Front Genet ; 14: 1281601, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38028584

RESUMEN

Local sheep in the northeastern Tarim Basin can adapt to dry and low-rainfall regional environments. In this study, three local sheep breeds in the northeastern Tarim Basin, LOP (LOP) sheep, Bayinbuluke (BYK) sheep, and Kunlun (KUN, also known as the Qiemo sheep) sheep, and three introduced sheep breeds, Suffolk (SUF) sheep, Dorset (APD) sheep, and Texel (TEX) sheep, were analyzed for genetic diversity, population structure, and selective signature using the Illumina OvineSNP50K BeadChip. We found that LOP, BYK, and KUN had lower observed heterozygosity and expected heterozygosity than TEX, SUF, and ADP, which were differentiated based on geographic distribution. We performed fixation index (FST) analysis on three local sheep breeds in the northeastern Tarim Basin (LOP, BYK, and KUN) and introduced sheep breeds (TEX, SUF, and ADP) to measure genetic differentiation. Nucleotide diversity (PI) analysis was performed on single-nucleotide polymorphism (SNP) data of LOP, BYK, and KUN. A total of 493 candidate genes were obtained by taking the intersection at a threshold of 5%. Among them, SMAD2, ESR2, and HAS2 were related to reproductive traits. PCDH15, TLE4, and TFAP2B were related to growth traits. SOD1, TSHR, and DNAJB5 were related to desert environmental adaptation. Analyzing the genetic patterns of local sheep in the northeastern Tarim Basin can protect the germplasm resources of local sheep and promote the development and utilization of sheep genetic resources.

6.
Nature ; 613(7942): 60-65, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36288749

RESUMEN

Dye-sensitized solar cells (DSCs) convert light into electricity by using photosensitizers adsorbed on the surface of nanocrystalline mesoporous titanium dioxide (TiO2) films along with electrolytes or solid charge-transport materials1-3. They possess many features including transparency, multicolour and low-cost fabrication, and are being deployed in glass facades, skylights and greenhouses4. Recent development of sensitizers5-10, redox mediators11-13 and device structures14 has improved the performance of DSCs, particularly under ambient light conditions14-17. To further enhance their efficiency, it is pivotal to control the assembly of dye molecules on the surface of TiO2 to favour charge generation. Here we report a route of pre-adsorbing a monolayer of a hydroxamic acid derivative on the surface of TiO2 to improve the dye molecular packing and photovoltaic performance of two newly designed co-adsorbed sensitizers that harvest light quantitatively across the entire visible domain. The best performing cosensitized solar cells exhibited a power conversion efficiency of 15.2% (which has been independently confirmed) under a standard air mass of 1.5 global simulated sunlight, and showed long-term operational stability (500 h). Devices with a larger active area of 2.8 cm2 exhibited a power conversion efficiency of 28.4% to 30.2% over a wide range of ambient light intensities, along with high stability. Our findings pave the way for facile access to high-performance DSCs and offer promising prospects for applications as power supplies and battery replacements for low-power electronic devices18-20 that use ambient light as their energy source.

7.
ACS Appl Mater Interfaces ; 14(45): 51149-51156, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36318648

RESUMEN

Surface passivation has become a key strategy for an improvement in power conversion efficiency (PCE) of perovskite solar cells (PSCs) since PSCs experienced a steep increase in PCE and reached a comparably matured point. Recently, surface passivation using a mixed salt of fluorinated alkyl ammonium iodide and formamidinium bromide demonstrated a remarkable improvement in both performance and stability, which can be tuned by the length of the alkyl chain. Nevertheless, the role of the alkyl chain in manipulating surface-limited crystal growth was not fully understood, preventing a further progress in interface control. In this study, we found that the length of the fluorine-substituted alkyl chain governed the crystal formation dynamics by manipulating surface tensions of different crystal orientations. The overall enhancement of the (001) plane, being the most favored, commonly resulted from the surface reformation of the perovskite film regardless of the chain length, while the highly oriented (001) over (111) was monitored with a particular chain length. The enhanced crystal orientation during surface recrystallization was responsible for the low trap density and thus effectively suppressed charge recombination at the interface, resulting in a considerable increase in open-circuit voltage and fill factor.

8.
Front Microbiol ; 13: 964799, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225357

RESUMEN

Donkeys' gut microbe is critical for their health and adaptation to the environment. Little research has been conducted on the donkey gut microbiome compared with other domestic animals. The Tibetan Plateau is an extreme environment. In this study, 6 Qinghai donkeys (QH) from the Tibetan Plateau and 6 Dezhou donkeys (DZ) were investigated, and the contents of 4 parts-stomach, small intestine, cecum, and rectum-were collected. 16S rRNA sequencing and metagenomic sequencing were used to analyze the composition and diversity of gut microbial communities in donkeys. The results showed that the flora diversity and richness of the hindgut were significantly higher than those of the foregut (p < 0.01), with no sex differences, and the community structure and composition of the same or adjacent regions (stomach, small intestine, cecum, and rectum) were similar. Besides, the flora diversity and richness of QH on the Tibetan Plateau were significantly higher than those of DZ (p < 0.05). The major pathways associated with QH were signal transduction mechanisms and carbohydrate transport and metabolism, and Bacteroidales were the major contributors to these functions. Our study provides novel insights into the contribution of microbiomes to the adaptive evolution of donkeys.

9.
Chem Soc Rev ; 51(17): 7509-7530, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35929481

RESUMEN

Halide perovskite solar cells (PSCs) have achieved power conversion efficiencies (PCEs) approaching 26%, however, the stability issue hinders their commercialization. Due to the soft ionic nature of perovskite materials, the strain effect on perovskite films has been recently recognized as one of the key factors that affects their opto-electronic properties and the device stability. Herein, we summarized the origins of strain, characterization techniques, and implications of strain on both perovskite film and solar cells as well as various strategies to control the strain. Finally, we proposed effective strategies for future strain engineering. We believe this comprehensive review could further facilitate researchers with a deeper understanding of strain effect and enhance the research activity in engineering the strain to further improve performance and especially the device stability toward commercialization.

10.
Science ; 377(6605): 495-501, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35901165

RESUMEN

Record power conversion efficiencies (PCEs) of perovskite solar cells (PSCs) have been obtained with the organic hole transporter 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9'-spirobifluorene (spiro-OMeTAD). Conventional doping of spiro-OMeTAD with hygroscopic lithium salts and volatile 4-tert-butylpyridine is a time-consuming process and also leads to poor device stability. We developed a new doping strategy for spiro-OMeTAD that avoids post-oxidation by using stable organic radicals as the dopant and ionic salts as the doping modulator (referred to as ion-modulated radical doping). We achieved PCEs of >25% and much-improved device stability under harsh conditions. The radicals provide hole polarons that instantly increase the conductivity and work function (WF), and ionic salts further modulate the WF by affecting the energetics of the hole polarons. This organic semiconductor doping strategy, which decouples conductivity and WF tunability, could inspire further optimization in other optoelectronic devices.

11.
Equine Vet J ; 54(1): 114-120, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33455000

RESUMEN

BACKGROUND: In contrast to horses, the only evidence suggesting gastrointestinal disease in neonatal donkeys is associated with Group A rotaviruses (RVAs) is the detection of viral antigens by ELISA in just 1 of 82 symptomatic donkey foals. No additional, more comprehensive investigations have been conducted, and RVAs if circulating in donkey populations have not been molecularly characterised. OBJECTIVES: To investigate if RVAs are associated with an outbreak of severe enteritis in neonatal donkeys and if associated determine the genotype(s) along with the phylogenetic relationship to RVA strains circulating in horses. STUDY DESIGN: Cross-sectional. METHODS: RT-PCR-based techniques were used for RVA diagnosis and gene amplification. Statistical significance was determined by Chi-square and Fisher's exact two-sided tests. Genotyping was performed by RotaC and phylogenetic analysis by neighbour joining. RESULTS: In 2019, acute enteritis occurred in 119 of 206 donkey foals (≤4 months) at two intensive donkey farms in the Shandong province of China. The highest morbidity (68.1%), mortality (29.5%) and fatality levels (45.5%) occurred in foals in the 30-89 day, 30-59 day and 0-29 day age groups respectively. RVA gene sequences were detected in 107 (89.9%) of the symptomatic individuals while further analysis demonstrated the outbreak was associated with the same G3P[12] RVA strain designated RVA/Donkey-wt/CHN/Don01/2019/G3P[12]. Although the VP4 gene of Don01 exhibited close phylogenetic relationships with equivalent RVA sequences commonly circulating in horses, encoding VP7 was more closely associated with sequences isolated from bats suggesting this new donkey strain arose via an intergenogroup reassortment event. MAIN LIMITATIONS: Actual prevalence not determined because <7% of asymptomatic donkey foals were included in this study. The complete genomic sequence of RVA/Donkey-wt/CHN/Don01/2019/G3P[12] remains to be determined. CONCLUSIONS: Valuable new information about the molecular epidemiology of rotaviruses in different equid species is provided by isolation and molecular characterisation of a novel RVA strain from neonatal donkeys.


Asunto(s)
Enteritis , Enfermedades de los Caballos , Infecciones por Rotavirus , Rotavirus , Animales , Estudios Transversales , Enteritis/epidemiología , Enteritis/veterinaria , Equidae , Genoma Viral , Genotipo , Enfermedades de los Caballos/epidemiología , Caballos , Filogenia , Rotavirus/genética , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/veterinaria
12.
ACS Energy Lett ; 6(11): 3916-3923, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34805526

RESUMEN

Tremendous efforts have been dedicated toward minimizing the open-circuit voltage deficits on perovskite solar cells (PSCs), and the fill factors are still relatively low. This hinders their further application in large scalable modules. Herein, we employ a newly designed ammonium salt, cyclohexylethylammonium iodide (CEAI), for interfacial engineering between the perovskite and hole-transporting layer (HTL), which enhanced the fill factor to 82.6% and consequent PCE of 23.57% on the target device. This can be associated with a reduction of the trap-assisted recombination rate at the 3D perovskite surface, via formation of a 2D perovskite interlayer. Remarkably, the property of the 2D perovskite interlayer along with the cyclohexylethyl group introduced by CEAI treatment also determines a pronounced enhancement in the surface hydrophobicity, leading to an outstanding stability of over 96% remaining efficiency of the passivated devices under maximum power point tracking with one sun illumination under N2 atmosphere at room temperature after 1500 h.

13.
ACS Appl Mater Interfaces ; 13(18): 21320-21330, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33914514

RESUMEN

Here, we report on three new triphenylamine-based enamines synthesized by condensation of an appropriate primary amine with 2,2-diphenylacetaldehyde and characterized by experimental techniques and density functional theory (DFT) computations. Experimental results allow highlighting attractive properties including solid-state ionization potential in the range of 5.33-5.69 eV in solid-state and hole mobilities exceeding 10-3 cm2/V·s, which are higher than those in spiro-OMeTAD at the same electric fields. DFT-based analysis points to the presence of several conformers close in energy at room temperature. The newly synthesized hole-transporting materials (HTMs) were used in perovskite solar cells and exhibited performances comparable to that of spiro-OMeTAD. The device containing one newly synthesized hole-transporting enamine was characterized by a power conversion efficiency of 18.4%. Our analysis indicates that the perovskite-HTM interface dominates the properties of perovskite solar cells. PL measurements indicate smaller efficiency for perovskite-to-new HTM hole transfer as compared to spiro-OMeTAD. Nevertheless, the comparable power conversion efficiencies and simple synthesis of the new compounds make them attractive candidates for utilization in perovskite solar cells.

14.
Chem Commun (Camb) ; 54(93): 13143-13146, 2018 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-30403245

RESUMEN

1,1,2-Trisubstituted alkenes with a single strongly electronic withdrawing activator, which are unreactive electron-deficient alkenes in transition metal-catalyzed [3+2] cycloaddition with vinyl three-membered heterocycles, were used in the Pd-catalyzed asymmetric cycloaddition of vinyl epoxides, affording multifunctionalized tetrahydrofurans in high yields with high diastereo- and enantioselectivities.

15.
Chem Asian J ; 13(8): 959-963, 2018 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-29570935

RESUMEN

Diastereo- and enantioselective cycloaddition of 3-nitroindoles with vinyl aziridine was realized under Pd-catalysis using commercially available Walphos as the ligand, affording pyrroloindolines in high yields with high diastereo- and enantioselectivities. The reaction can be scaled up to a gram scale and the reaction products are easily converted to amino pyrroloindoline and other pyrroloindoline derivatives.

16.
Org Lett ; 19(24): 6658-6661, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29164892

RESUMEN

An asymmetric [3 + 2] cycloaddition reaction of vinyl epoxides with α,ß-unsaturated ketones, the single activated electron-deficient alkenes, has been achieved under Pd-catalysis in excellent diastereo- and enantioselectivity. The utilities of the protocol are demonstrated by transformation of the products into other useful chiral molecules. Density functional theory calculations rationalize the stereocontrol of the reaction.

17.
Angew Chem Int Ed Engl ; 54(5): 1604-7, 2015 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-25504788

RESUMEN

A palladium-catalyzed asymmetric [3+2] cycloaddition reaction of vinylaziridines with α,ß-unsaturated ketones, wherein the alkenes have a single activator, is realized in high diastereo- and enantioselectivity, thus affording 3,4-disubstituted pyrrolidines in high yields with excellent ee values. The introduction of a methyl group at C1 of the vinyl group the vinylaziridines greatly improves the stereochemistry of the reaction. A plausible transition state is proposed.


Asunto(s)
Aziridinas/química , Cetonas/química , Paladio/química , Alquenos/química , Catálisis , Reacción de Cicloadición , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...