Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 248: 125811, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37467831

RESUMEN

Circular RNA (circRNA) has been implicated in liver fibrosis and modulated by multiple elusive molecular mechanisms, while the effects of N6-methyladenosine (m6A) modification on circRNA are still elusive. Herein, we identify circIRF2 from our circRNA sequencing data, which decreased in liver fibrogenesis stage and restored in resolution stage, indicating that dysregulated circIRF2 may be closely associated with liver fibrosis. Gain/loss-of-function analysis was performed to evaluate the effects of circIRF2 on liver fibrosis at both the fibrogenesis and resolution in vivo. Ectopic expression of circIRF2 attenuated liver fibrogenesis and HSCs activation at the fibrogenesis stage, whereas downregulation of circIRF2 impaired mouse liver injury repair and inflammation resolution. Mechanistically, YTHDF2 recognized m6A-modified circIRF2 and diminished circIRF2 stability, partly accounting for the decreased circIRF2 in liver fibrosis. Microarray was applied to investigate miRNAs regulated by circIRF2, our data elucidate cytoplasmic circIRF2 may directly harbor miR-29b-1-5p and competitively relieve its inhibitory effect on FOXO3, inducing FOXO3 nuclear translocation and accumulation. Clinically, circIRF2 downregulation was prevalent in liver fibrosis patients compared with healthy individuals. In summary, our findings offer a novel insight into m6A modification-mediated regulation of circRNA and suggest that circIRF2 may be an exploitable prognostic marker and/or therapeutic target for liver fibrosis.


Asunto(s)
MicroARNs , ARN Circular , Ratones , Animales , Humanos , ARN Circular/genética , ARN Circular/metabolismo , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/patología , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción/metabolismo , Proteína Forkhead Box O3/genética , Proteínas de Unión al ARN/metabolismo
2.
Br J Pharmacol ; 180(20): 2641-2660, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37248964

RESUMEN

BACKGROUND AND PURPOSE: Necroptosis plays an essential role in acute kidney injury and is mediated by receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and mixed lineage kinase domain-like pseudokinase (MLKL). A novel RIPK3 inhibitor, compound 42 (Cpd-42) alleviates the systemic inflammatory response. The current study was designed to investigate whether Cpd-42 exhibits protective effects on acute kidney injury and reveal the underlying mechanisms. EXPERIMENTAL APPROACH: The effects of Cpd-42 were determined in vivo through cisplatin- and ischaemia/reperfusion (I/R)-induced acute kidney injury and in vitro through cisplatin- and hypoxia/re-oxygenation (H/R)-induced cell damage. Transmission electron microscopy and periodic acid-Schiff staining were used to identify renal pathology. Cellular thermal shift assay and RIPK3-knockout mouse renal tubule epithelial cells were used to explore the relationship between Cpd-42 and RIPK3. Molecular docking and site-directed mutagenesis were used to determine the binding site of RIPK3 with Cpd-42. KEY RESULTS: Cpd-42 reduced human proximal tubule epithelial cell line (HK-2) cell damage, necroptosis and inflammatory responses in vitro. Furthermore, in vivo, cisplatin- and I/R-induced acute kidney injury was alleviated by Cpd-42 treatment. Cpd-42 inhibited necroptosis by interacting with two key hydrogen bonds of RIPK3 at Thr94 and Ser146, which further blocked the phosphorylation of RIPK3 and mitigated acute kidney injury. CONCLUSION AND IMPLICATIONS: Acting as a novel RIPK3 inhibitor, Cpd-42 reduced kidney damage, inflammatory response and necroptosis in acute kidney injury by binding to sites Thr94 and Ser146 on RIPK3. Cpd-42 could be a promising treatment for acute kidney injury.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Ratones , Animales , Humanos , Cisplatino/farmacología , Necroptosis , Simulación del Acoplamiento Molecular , Lesión Renal Aguda/metabolismo , Proteínas Quinasas/metabolismo , Ratones Noqueados , Apoptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores
3.
Biomed Pharmacother ; 156: 113807, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36242850

RESUMEN

Since the end of 2019, the outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has triggered a pneumonia epidemic, posing a significant public health challenge in 236 countries, territories, and regions worldwide. Clinically, in addition to the symptoms of pulmonary infection, many patients with SARS-CoV-2 infections, especially those with a critical illness, eventually develop multiple organ failure in which damage to the kidney function is common, ultimately leading to severe consequences such as increased mortality and morbidity. To date, three coronaviruses have set off major global public health security incidents: Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and SARS-CoV-2. Among the diseases caused by the coronaviruses, the coronavirus disease 2019 (COVID-19) has been the most impactful and harmful. Similar to with SARS-CoV-2 infections, previous studies have shown that kidney injury is also common and prominent in patients with the two other highly pathogenic coronaviruses. Therefore, in this review, we aimed to comprehensively summarize the epidemiological and clinical characteristics of these three pandemic-level infections, provide a deep analysis of the potential mechanism of COVID-19 in various types of kidney diseases, and explore the causes of secondary kidney diseases of SARS-CoV-2, so as to provide a reference for further research and the clinical prevention of kidney damage caused by coronaviruses.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , SARS-CoV-2 , Pandemias , Riñón
4.
Biochem Pharmacol ; 204: 115240, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36070847

RESUMEN

Chronic kidney disease (CKD) is an increasing public health concern, characterized by a reduced glomerular filtration rate and increased urinary albumin excretion. Renal fibrosis is an important pathological condition in patients with CKD. In this study, we evaluated the anti-fibrotic effect of Cpd-0225, a novel transforming growth factor-ß (TGF-ß) type I receptor (also known as ALK5) inhibitor, in vitro and in vivo, by comparing its effect with that of SB431542, a classic ALK5 inhibitor, which has not entered the clinical trial stage owing to multiple side effects. Our data showed that Cpd-0225 attenuated fibrotic response in TGF-ß1-stimulated human kidney tubular epithelial cells and repeated hypoxia/reoxygenation-treated mouse tubular epithelial cells. We further confirmed that Cpd-0225 improved renal tubular injury and ameliorated collagen deposition in unilateral ureteral obstruction-, ischemia/reperfusion-, and aristolochic acid-induced mouse models of renal fibrosis. In addition, molecular docking and site-directed mutagenesis showed that Cpd-0225 exerted a higher reno-protective effect than SB431542, by physically binding to the key amino acid residues, Lys232 and Lys335 of ALK5, thereby suppressing the phosphorylation of Smad3 and ERK1/2. Taken together, these findings suggest that Cpd-0225 administration attenuates renal fibrosis via ALK5-dependent mechanisms and displays a more effective therapeutic effect than SB431542. Thus, Cpd-0225 may serve as a potential therapeutic agent for the treatment of CKD.


Asunto(s)
Insuficiencia Renal Crónica , Obstrucción Ureteral , Albúminas/metabolismo , Albúminas/farmacología , Aminoácidos/metabolismo , Animales , Benzamidas , Colágeno/metabolismo , Dioxoles , Fibrosis , Humanos , Riñón/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Insuficiencia Renal Crónica/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factores de Crecimiento Transformadores/metabolismo , Factores de Crecimiento Transformadores/farmacología , Obstrucción Ureteral/tratamiento farmacológico , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología
5.
Int Immunopharmacol ; 112: 109262, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36166972

RESUMEN

Acute kidney injury (AKI) is a clinical syndrome that is defined as a sudden decline in renal function and characterized by inflammation and programmed cell death of renal tubular epithelial cells. Necroptosis is a form of regulated cell death that requires activation of receptor interacting protein kinase 3 (RIPK3) and its phosphorylation of the substrate MLKL. RIPK3 plays an important role in acute kidney injury, and hence developing its inhibitors is considered as one of the promising strategies aimed at prevention and treatment of AKI. Recently, we discovered AZD5423 as a novel potent RIPK3 inhibitor using a computer-aided hybrid virtual screening strategy according to three-dimensional structure of RIPK3. Our findings revealed that AZD5423 strongly inhibits activation of RIPK3, and MLKL phosphorylation upon cisplatin-, hypoxia/reoxygenation (H/R)- and TNF-α stimuli as compared with GSK872, which is a previously identified RIPK3 inhibitor. Importantly, AZD5423 exerts effective protection against cisplatin- and ischemia/reperfusion (I/R)-induced AKI mouse model. The results of cellular thermal shift assay and experiments in RIPK3 knockout cells indicated that AZD5423 could directly target RIPK3 to inhibit RIPK3 kinase activity. Mechanistically, the docking of AZD5423 and RIPK3 suggested that the kinase domain of RIPK3 for Lys50, Arg313, Lys29, Arg37 might form hydrogen bonds with AZD5423. Site-directed mutagenesis further revealed that AZD5423 reduces injury response via interacting with the key RIPK3 amino acid residues of Lys50 and Arg313. In conclusion, our study has demonstrated that AZD5423 may serve as a potent inhibitor of RIPK3 kinase and a promising clinical candidate for AKI treatment.


Asunto(s)
Lesión Renal Aguda , Necroptosis , Ratones , Animales , Cisplatino/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo , Ratones Endogámicos C57BL , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Lesión Renal Aguda/inducido químicamente , Inflamación/metabolismo , Aminoácidos
6.
Eur J Pharmacol ; 929: 175116, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35780825

RESUMEN

Renal fibrosis, a common feature of chronic kidney disease, causes the progressive loss of renal function, in which TGF-ß1 plays a critical role. In this study, we found that expression levels of TGF-ß1 and its receptor 1 (TGF-ßR1) were both significantly increased in obstructive fibrosis kidneys. AZ12601011 is a small molecular inhibitor of TGF-ßR1; however, its therapeutic potential for renal fibrosis remains unclear. During the experiments, AZ12601011 was applied to various models of renal fibrosis followed by unilateral ureteral obstruction (UUO) and ischemia/reperfusion (I/R) in vivo, in addition to renal tubular epithelial cells (TECs) challenged by hypoxia/reoxygenation (H/R) and TGF-ß1in vitro. Our results revealed that AZ12601011 ameliorated renal injuries and fibrosis shown by PAS, HE, and Masson staining, which was consistent with the decrease in Col-1 and α-SMA expression in the kidneys from UUO and I/R mice. Similarly, in vitro data showed that AZ12601011 inhibited the induction of Col-1 and α-SMA in both TECs treated with TGF-ß1 and H/R. In addition, the results of cellular thermal shift assay (CETSA), molecular docking, and western bolt indicated that AZ12601011 could directly bind to TGF-ßR1 and block activation of the downstream Smad3. Taken together, our findings suggest that AZ12601011 can attenuate renal fibrosis by blocking the TGF-ß/Smad3 signaling pathway and it might serve as a promising clinical candidate in the fight against fibrotic kidney diseases.


Asunto(s)
Enfermedades Renales , Insuficiencia Renal Crónica , Obstrucción Ureteral , Animales , Fibrosis , Riñón/patología , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Enfermedades Renales/prevención & control , Ratones , Simulación del Acoplamiento Molecular , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Insuficiencia Renal Crónica/patología , Factor de Crecimiento Transformador beta1/metabolismo , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/tratamiento farmacológico
7.
Int Immunopharmacol ; 110: 109034, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35834952

RESUMEN

Hepatic fibrosis is an essential pathology of multiple chronicliverdiseases. The aim of this study was to investigate the role of miR-301a-3p in hepatic fibrosis. We found that miR-301a-3p was upregulated in hepatic fibrosis patients and in culture-activated human hepatic stellate cells (HSCs). Interestingly, miR-301a-3p expression was increased in hepatic fibrosis progression mice while decreased in hepatic fibrosis recovery mice, indicating that miR-301a-3p may participate in the hepatic fibrosis pathology. Functionally, the effects of miR-301a-3p both on hepatic fibrosis progression and regression were assessed in vivo. Inhibiting miR-301a-3p amelioratedmouse liver fibrogenesis and collagen deposition and suppressed HSC activation and fibrogenic factor expression. Whereas, in hepatic fibrosis regression, upregulating miR-301a-3p impaired mouse hepatic fibrosis recovery by inducing HSC activation and triggering inflammation. Consistently, gain-of-function and loss-of-function analysis of miR-301a-3p were performed to evaluate its effects on human HSCs LX-2 cell. We found that suppressing miR-301a-3p inhibited LX-2 cell activation and proliferation, and induced LX-2 cell apoptosis, accompaniedby decreased fibrotic mediators expression. Collectively, these findings suggest miR-301a-3p drives liver fibrogenesis and HSC activation in hepatic fibrosis. Mechanistically, we demonstrated miR-301a-3p binds directly to phosphatase and tensin homolog (PTEN) by luciferase reporter analysis, pull-down, and RIP assay. Indicating that miR-301a-3p plays a critical rolein promotingliverfibrogenesis viamodulating the PTEN/platelet derived growth factor ß (PDGFR-ß) pathway. In conclusion, our findings demonstrate that miR-301a-3p expression is closely correlated with hepatic fibrosis pathology, and that enhancing miR-301a-3p maintains the HSC profibrogenic phenotype, triggers inflammatoryresponses, promotes fibrogenic factor production, and further exacerbates liver fibrogenesis. These findings suggest that miR-301a-3p may serve as a promising diagnostic and prognosis biomarker for hepatic fibrosis treatment.


Asunto(s)
Células Estrelladas Hepáticas , MicroARNs/metabolismo , Animales , Proliferación Celular , Células Estrelladas Hepáticas/patología , Humanos , Cirrosis Hepática/metabolismo , Ratones , MicroARNs/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-sis/farmacología , Transducción de Señal
8.
Sci Transl Med ; 14(640): eabk2709, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35417191

RESUMEN

The role of N6-methyladenosine (m6A) modifications in renal diseases is largely unknown. Here, we characterized the role of N6-adenosine-methyltransferase-like 3 (METTL3), whose expression is elevated in renal tubules in different acute kidney injury (AKI) models as well as in human biopsies and cultured tubular epithelial cells (TECs). METTL3 silencing alleviated renal inflammation and programmed cell death in TECs in response to stimulation by tumor necrosis factor-α (TNF-α), cisplatin, and lipopolysaccharide (LPS), whereas METTL3 overexpression had the opposite effects. Conditional knockout of METTL3 from mouse kidneys attenuated cisplatin- and ischemic/reperfusion (I/R)-induced renal dysfunction, injury, and inflammation. Moreover, TAB3 [TGF-ß-activated kinase 1 (MAP3K7) binding protein 3] was identified as a target of METTL3 by m6A methylated RNA immunoprecipitation sequencing and RNA sequencing. The stability of TAB3 was increased through binding of IGF2BP2 (insulin-like growth factor 2 binding protein 2) to its m6A-modified stop codon regions. The proinflammatory effects of TAB3 were then explored both in vitro and in vivo. Adeno-associated virus 9 (AAV9)-mediated METTL3 silencing attenuated renal injury and inflammation in cisplatin- and LPS-induced AKI mouse models. We further identified Cpd-564 as a METTL3 inhibitor that had better protective effects against cisplatin- and ischemia/reperfusion-induced renal injury and inflammation than S-adenosyl-l-homocysteine, a previously identified METTL3 inhibitor. Collectively, METTL3 promoted m6A modifications of TAB3 and enhanced its stability via IGF2BP2-dependent mechanisms. Both genetic and pharmacological inhibition of METTL3 attenuated renal injury and inflammation, suggesting that the METTL3/TAB3 axis is a potential target for treatment of AKI.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Cisplatino/metabolismo , Femenino , Humanos , Inflamación/metabolismo , Riñón/metabolismo , Lipopolisacáridos/metabolismo , Masculino , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Proteínas de Unión al ARN/metabolismo , Daño por Reperfusión/metabolismo
9.
Acta Pharmacol Sin ; 43(2): 330-341, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33833407

RESUMEN

Stratifin (SFN) is a member of the 14-3-3 family of highly conserved soluble acidic proteins, which regulates a variety of cellular activities such as cell cycle, cell growth and development, cell survival and death, and gene transcription. Acute kidney injury (AKI) is prevalent disorder characterized by inflammatory response, oxidative stress, and programmed cell death in renal tubular epithelial cells, but there is still a lack of effective therapeutic target for AKI. In this study, we investigated the role of SFN in AKI and the underlying mechanisms. We established ischemic and nephrotoxic AKI mouse models caused by ischemia-reperfusion (I/R) and cisplatin, respectively. We conducted proteomic and immunohistochemical analyses and found that SFN expression levels were significantly increased in AKI patients, cisplatin- or I/R-induced AKI mice. In cisplatin- or hypoxia/reoxygenation (H/R)-treated human proximal tubule epithelial cells (HK2), we showed that knockdown of SFN significantly reduced the expression of kidney injury marker Kim-1, attenuated programmed cell death and inflammatory response. Knockdown of SFN also significantly alleviated the decline of renal function and histological damage in cisplatin-caused AKI mice in vivo. We further revealed that SFN bound to RIPK3, a key signaling modulator in necroptosis, to induce necroptosis and the subsequent inflammation in cisplatin- or H/R-treated HK2 cells. Overexpression of SFN increased Kim-1 protein levels in cisplatin-treated MTEC cells, which was suppressed by RIPK3 knockout. Taken together, our results demonstrate that SFN that enhances cisplatin- or I/R-caused programmed cell death and inflammation via interacting with RIPK3 may serve as a promising therapeutic target for AKI treatment.


Asunto(s)
Proteínas 14-3-3/metabolismo , Lesión Renal Aguda/metabolismo , Isquemia/metabolismo , Enfermedades Renales/metabolismo , Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Humanos , Túbulos Renales/metabolismo , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...