Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 629(8013): 767-768, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38773293
2.
Nucleic Acids Res ; 52(8): 4393-4408, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587182

RESUMEN

Local mutation rates in human are highly heterogeneous, with known variability at the scale of megabase-sized chromosomal domains, and, on the other extreme, at the scale of oligonucleotides. The intermediate, kilobase-scale heterogeneity in mutation risk is less well characterized. Here, by analyzing thousands of somatic genomes, we studied mutation risk gradients along gene bodies, representing a genomic scale spanning roughly 1-10 kb, hypothesizing that different mutational mechanisms are differently distributed across gene segments. The main heterogeneity concerns several kilobases at the transcription start site and further downstream into 5' ends of gene bodies; these are commonly hypomutated with several mutational signatures, most prominently the ubiquitous C > T changes at CpG dinucleotides. The width and shape of this mutational coldspot at 5' gene ends is variable across genes, and corresponds to variable interval of lowered DNA methylation depending on gene activity level and regulation. Such hypomutated loci, at 5' gene ends or elsewhere, correspond to DNA hypomethylation that can associate with various landmarks, including intragenic enhancers, Polycomb-marked regions, or chromatin loop anchor points. Tissue-specific DNA hypomethylation begets tissue-specific local hypomutation. Of note, direction of mutation risk is inverted for AID/APOBEC3 cytosine deaminase activity, whose signatures are enriched in hypomethylated regions.


Asunto(s)
Islas de CpG , Metilación de ADN , Tasa de Mutación , Humanos , Mutación , Sitio de Iniciación de la Transcripción , Genoma Humano , Heterogeneidad Genética
3.
Nat Cancer ; 5(2): 330-346, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38200245

RESUMEN

Mutations in human cells exhibit increased burden in heterochromatic, late DNA replication time (RT) chromosomal domains, with variation in mutation rates between tissues mirroring variation in heterochromatin and RT. We observed that regional mutation risk further varies between individual tumors in a manner independent of cell type, identifying three signatures of domain-scale mutagenesis in >4,000 tumor genomes. The major signature reflects remodeling of heterochromatin and of the RT program domains seen across tumors, tissues and cultured cells, and is robustly linked with higher expression of cell proliferation genes. Regional mutagenesis is associated with loss of activity of the tumor-suppressor genes RB1 and TP53, consistent with their roles in cell cycle control, with distinct mutational patterns generated by the two genes. Loss of regional heterogeneity in mutagenesis is associated with deficiencies in various DNA repair pathways. These mutation risk redistribution processes modify the mutation supply towards important genes, diverting the course of somatic evolution.


Asunto(s)
Genes cdc , Neoplasias , Humanos , Heterocromatina , Mutación/genética , Neoplasias/genética , Mutagénesis/genética
5.
Sci Rep ; 13(1): 9791, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328655

RESUMEN

Ionizing radiation is known to be DNA damaging and mutagenic, however less is known about which mutational footprints result from exposures of human cells to different types of radiation. We were interested in the mutagenic effects of particle radiation exposures on genomes of various human cell types, in order to gauge the genotoxic risks of galactic cosmic radiation, and of certain types of tumor radiotherapy. To this end, we exposed cultured cell lines from the human blood, breast and lung to fractionated proton and alpha particle (helium nuclei) beams at doses sufficient to considerably affect cell viability. Whole-genome sequencing revealed that mutation rates were not overall markedly increased upon proton and alpha exposures. However, there were modest changes in mutation spectra and distributions, such as the increases in clustered mutations and of certain types of indels and structural variants. The spectrum of mutagenic effects of particle beams may be cell-type and/or genetic background specific. Overall, the mutational effects of repeated exposures to proton and alpha radiation on human cells in culture appear subtle, however further work is warranted to understand effects of long-term exposures on various human tissues.


Asunto(s)
Radiación Cósmica , Protones , Humanos , Partículas alfa/efectos adversos , Radiación Cósmica/efectos adversos , Radiación Ionizante , Mutación , Mutágenos
6.
BMC Biol ; 21(1): 92, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095494

RESUMEN

BACKGROUND: TP53 is a master tumor suppressor gene, mutated in approximately half of all human cancers. Given the many regulatory roles of the corresponding p53 protein, it is possible to infer loss of p53 activity - which may occur due to alterations in trans - from gene expression patterns. Several such alterations that phenocopy p53 loss are known, however additional ones may exist, but their identity and prevalence among human tumors are not well characterized. RESULTS: We perform a large-scale statistical analysis on transcriptomes of ~ 7,000 tumors and ~ 1,000 cell lines, estimating that 12% and 8% of tumors and cancer cell lines, respectively, phenocopy TP53 loss: they are likely deficient in the activity of the p53 pathway, while not bearing obvious TP53 inactivating mutations. While some of these cases are explained by amplifications in the known phenocopying genes MDM2, MDM4 and PPM1D, many are not. An association analysis of cancer genomic scores jointly with CRISPR/RNAi genetic screening data identified an additional common TP53-loss phenocopying gene, USP28. Deletions in USP28 are associated with a TP53 functional impairment in 2.9-7.6% of breast, bladder, lung, liver and stomach tumors, and have comparable effect size to MDM4 amplifications. Additionally, in the known copy number alteration (CNA) segment harboring MDM2, we identify an additional co-amplified gene (CNOT2) that may cooperatively boost the TP53 functional inactivation effect of MDM2. An analysis of cancer cell line drug screens using phenocopy scores suggests that TP53 (in)activity commonly modulates associations between anticancer drug effects and various genetic markers, such as PIK3CA and PTEN mutations, and should thus be considered as a drug activity modifying factor in precision medicine. As a resource, we provide the drug-genetic marker associations that differ depending on TP53 functional status. CONCLUSIONS: Human tumors that do not bear obvious TP53 genetic alterations but that phenocopy p53 activity loss are common, and the USP28 gene deletions are one likely cause.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Prevalencia , Neoplasias/genética , Genes p53 , Mutación , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Represoras/genética
8.
Clin Cancer Res ; 29(2): 422-431, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36346689

RESUMEN

PURPOSE: To explore the role of NBN as a pan-cancer susceptibility gene. EXPERIMENTAL DESIGN: Matched germline and somatic DNA samples from 34,046 patients were sequenced using Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets and presumed pathogenic germline variants (PGV) identified. Allele-specific and gene-centered analysis of enrichment was conducted and a validation cohort of 26,407 pan-cancer patients was analyzed. Functional studies utilized cellular models with analysis of protein expression, MRN complex formation/localization, and viability assessment following treatment with γ-irradiation. RESULTS: We identified 83 carriers of 32 NBN PGVs (0.25% of the studied series), 40% of which (33/83) carried the Slavic founder p.K219fs. The frequency of PGVs varied across cancer types. Patients harboring NBN PGVs demonstrated increased loss of the wild-type allele in their tumors [OR = 2.7; confidence interval (CI): 1.4-5.5; P = 0.0024; pan-cancer], including lung and pancreatic tumors compared with breast and colorectal cancers. p.K219fs was enriched across all tumor types (OR = 2.22; CI: 1.3-3.6; P = 0.0018). Gene-centered analysis revealed enrichment of PGVs in cases compared with controls in the European population (OR = 1.9; CI: 1.3-2.7; P = 0.0004), a finding confirmed in the replication cohort (OR = 1.8; CI: 1.2-2.6; P = 0.003). Two novel truncating variants, p.L19* and p.N71fs, produced a 45 kDa fragment generated by alternative translation initiation that maintained binding to MRE11. Cells expressing these fragments showed higher sensitivity to γ-irradiation and lower levels of radiation-induced KAP1 phosphorylation. CONCLUSIONS: Burden analyses, biallelic inactivation, and functional evidence support the role of NBN as contributing to a broad cancer spectrum. Further studies in large pan-cancer series and the assessment of epistatic and environmental interactions are warranted to further define these associations.


Asunto(s)
Mutación de Línea Germinal , Neoplasias Pancreáticas , Humanos , Mutación , Neoplasias Pancreáticas/patología , Células Germinativas , Daño del ADN/genética , Predisposición Genética a la Enfermedad , Proteínas Nucleares/genética , Proteínas de Ciclo Celular/genética
9.
Nat Commun ; 13(1): 4520, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927263

RESUMEN

CRISPR/Cas9 gene editing can inactivate genes in a precise manner. This process involves DNA double-strand breaks (DSB), which may incur a loss of cell fitness. We hypothesize that DSB toxicity may be variable depending on the chromatin environment in the targeted locus. Here, by analyzing isogenic cell line pair CRISPR experiments jointly with previous screening data from across ~900 cell lines, we show that TP53-associated break toxicity is higher in genomic regions that harbor active chromatin, such as gene regulatory elements or transcription elongation histone marks. DSB repair pathway choice and DNA sequence context also associate with toxicity. We also show that, due to noise introduced by differential toxicity of sgRNA-targeted sites, the power of genetic screens to detect conditional essentiality is reduced in TP53 wild-type cells. Understanding the determinants of Cas9 cut toxicity will help improve design of CRISPR reagents to avoid incidental selection of TP53-deficient and/or DNA repair deficient cells.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Cromatina , Pruebas Genéticas , Genómica
10.
Nat Commun ; 13(1): 3724, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35764656

RESUMEN

Somatic mutations are an inevitable component of ageing and the most important cause of cancer. The rates and types of somatic mutation vary across individuals, but relatively few inherited influences on mutation processes are known. We perform a gene-based rare variant association study with diverse mutational processes, using human cancer genomes from over 11,000 individuals of European ancestry. By combining burden and variance tests, we identify 207 associations involving 15 somatic mutational phenotypes and 42 genes that replicated in an independent data set at a false discovery rate of 1%. We associate rare inherited deleterious variants in genes such as MSH3, EXO1, SETD2, and MTOR with two phenotypically different forms of DNA mismatch repair deficiency, and variants in genes such as EXO1, PAXIP1, RIF1, and WRN with deficiency in homologous recombination repair. In addition, we identify associations with other mutational processes, such as APEX1 with APOBEC-signature mutagenesis. Many of the genes interact with each other and with known mutator genes within cellular sub-networks. Considered collectively, damaging variants in the identified genes are prevalent in the population. We suggest that rare germline variation in diverse genes commonly impacts mutational processes in somatic cells.


Asunto(s)
Síndromes Neoplásicos Hereditarios , Genoma Humano/genética , Células Germinativas , Humanos , Mutagénesis , Mutación , Síndromes Neoplásicos Hereditarios/genética
11.
Nat Commun ; 13(1): 2926, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614096

RESUMEN

Genomic analyses have revealed mutational footprints associated with DNA maintenance gone awry, or with mutagen exposures. Because cancer therapeutics often target DNA synthesis or repair, we asked if mutational signatures make useful markers of drug sensitivity. We detect mutational signatures in cancer cell line exomes (where matched healthy tissues are not available) by adjusting for the confounding germline mutation spectra across ancestries. We identify robust associations between various mutational signatures and drug activity across cancer cell lines; these are as numerous as associations with established genetic markers such as driver gene alterations. Signatures of prior exposures to DNA damaging agents - including chemotherapy - tend to associate with drug resistance, while signatures of deficiencies in DNA repair tend to predict sensitivity towards particular therapeutics. Replication analyses across independent drug and CRISPR genetic screening data sets reveal hundreds of robust associations, which are provided as a resource for drug repurposing guided by mutational signature markers.


Asunto(s)
Línea Celular Tumoral , Resistencia a Antineoplásicos , Exoma , Neoplasias , Línea Celular Tumoral/efectos de los fármacos , Línea Celular Tumoral/metabolismo , ADN/metabolismo , Análisis Mutacional de ADN/métodos , Resistencia a Antineoplásicos/genética , Exoma/genética , Humanos , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética
12.
Clin Sci (Lond) ; 136(5): 383-404, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35274136

RESUMEN

Genome sequencing can be used to detect DNA repair failures in tumors and learn about underlying mechanisms. Here, we synthesize findings from genomic studies that examined deficiencies of the DNA mismatch repair (MMR) pathway. The impairment of MMR results in genome-wide hypermutation and in the 'microsatellite instability' (MSI) phenotype-occurrence of indel mutations at short tandem repeat (microsatellite) loci. The MSI status of tumors was traditionally assessed by molecular testing of a selected set of MS loci or by measuring MMR protein expression levels. Today, genomic data can provide a more complete picture of the consequences on genomic instability. Multiple computational studies examined somatic mutation distributions that result from failed DNA repair pathways in tumors. These include analyzing the commonly studied trinucleotide mutational spectra of single-nucleotide variants (SNVs), as well as of other features such as indels, structural variants, mutation clusters and regional mutation rate redistribution. The identified mutation patterns can be used to rigorously measure prevalence of MMR failures across cancer types, and potentially to subcategorize the MMR deficiencies. Diverse data sources, genomic and pre-genomic, from human and from experimental models, suggest there are different ways in which MMR can fail, and/or that the cell-type or genetic background may result in different types of MMR mutational patterns. The spectrum of MMR failures may direct cancer evolution, generating particular sets of driver mutations. Moreover, MMR affects outcomes of therapy by DNA damaging drugs, antimetabolites, nonsense-mediated mRNA decay (NMD) inhibitors, and immunotherapy by promoting either resistance or sensitivity, depending on the type of therapy.


Asunto(s)
Neoplasias Colorrectales , Reparación de la Incompatibilidad de ADN , Neoplasias Colorrectales/genética , Reparación de la Incompatibilidad de ADN/genética , Reparación del ADN/genética , Genómica , Humanos , Inestabilidad de Microsatélites , Mutación/genética
13.
PLoS One ; 17(1): e0262495, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35015788

RESUMEN

The mutation risk of a DNA locus depends on its oligonucleotide context. In turn, mutability of oligonucleotides varies across individuals, due to exposure to mutagenic agents or due to variable efficiency and/or accuracy of DNA repair. Such variability is captured by mutational signatures, a mathematical construct obtained by a deconvolution of mutation frequency spectra across individuals. There is a need to enhance methods for inferring mutational signatures to make better use of sparse mutation data (e.g., resulting from exome sequencing of cancers), to facilitate insight into underlying biological mechanisms, and to provide more accurate mutation rate baselines for inferring positive and negative selection. We propose a conceptualization of mutational signatures that represents oligonucleotides via descriptors of DNA conformation: base pair, base pair step, and minor groove width parameters. We demonstrate how such DNA structural parameters can accurately predict mutation occurrence due to DNA repair failures or due to exposure to diverse mutagens such as radiation, chemical exposure, and the APOBEC cytosine deaminase enzymes. Furthermore, the mutation frequency of DNA oligomers classed by structural features can accurately capture systematic variability in mutagenesis of >1,000 tumors originating from diverse human tissues. A nonnegative matrix factorization was applied to mutation spectra stratified by DNA structural features, thereby extracting novel mutational signatures. Moreover, many of the known trinucleotide signatures were associated with an additional spectrum in the DNA structural descriptor space, which may aid interpretation and provide mechanistic insight. Overall, we suggest that the power of DNA sequence motif-based mutational signature analysis can be enhanced by drawing on DNA shape features.


Asunto(s)
Análisis Mutacional de ADN/métodos , ADN/química , ADN/genética , Genoma Humano , Mutación , Neoplasias/patología , Conformación de Ácido Nucleico , Desaminasas APOBEC/metabolismo , Daño del ADN , Reparación del ADN , Humanos , Neoplasias/genética , Transcriptoma
14.
Nat Commun ; 12(1): 7051, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862370

RESUMEN

The classic two-hit model posits that both alleles of a tumor suppressor gene (TSG) must be inactivated to cause cancer. In contrast, for some oncogenes and haploinsufficient TSGs, a single genetic alteration can suffice to increase tumor fitness. Here, by quantifying the interactions between mutations and copy number alterations (CNAs) across 10,000 tumors, we show that many cancer genes actually switch between acting as one-hit or two-hit drivers. Third order genetic interactions identify the causes of some of these switches in dominance and dosage sensitivity as mutations in other genes in the same biological pathway. The correct genetic model for a gene thus depends on the other mutations in a genome, with a second hit in the same gene or an alteration in a different gene in the same pathway sometimes representing alternative evolutionary paths to cancer.


Asunto(s)
Carcinogénesis/genética , Genes Supresores de Tumor , Modelos Genéticos , Neoplasias/genética , Oncogenes , Alelos , Variaciones en el Número de Copia de ADN , Conjuntos de Datos como Asunto , Haploinsuficiencia , Humanos , Mutación
15.
PLoS Biol ; 19(3): e3001176, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33788831

RESUMEN

Analysis of cancer mutagenic signatures provides information about the origin of mutations and can inform the use of clinical therapies, including immunotherapy. In particular, APOBEC3A (A3A) has emerged as a major driver of mutagenesis in cancer cells, and its expression results in DNA damage and susceptibility to treatment with inhibitors of the ATR and CHK1 checkpoint kinases. Here, we report the implementation of CRISPR/Cas-9 genetic screening to identify susceptibilities of multiple A3A-expressing lung adenocarcinoma (LUAD) cell lines. We identify HMCES, a protein recently linked to the protection of abasic sites, as a central protein for the tolerance of A3A expression. HMCES depletion results in synthetic lethality with A3A expression preferentially in a TP53-mutant background. Analysis of previous screening data reveals a strong association between A3A mutational signatures and sensitivity to HMCES loss and indicates that HMCES is specialized in protecting against a narrow spectrum of DNA damaging agents in addition to A3A. We experimentally show that both HMCES disruption and A3A expression increase susceptibility of cancer cells to ionizing radiation (IR), oxidative stress, and ATR inhibition, strategies that are often applied in tumor therapies. Overall, our results suggest that HMCES is an attractive target for selective treatment of A3A-expressing tumors.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Citidina Desaminasa/genética , Proteínas de Unión al ADN/genética , Proteínas/genética , Adenocarcinoma del Pulmón/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Citidina Desaminasa/metabolismo , Citosina Desaminasa/genética , Citosina Desaminasa/metabolismo , ADN/genética , ADN/metabolismo , Daño del ADN/genética , Daño del ADN/fisiología , Replicación del ADN/genética , Replicación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Humanos , Proteínas/metabolismo
16.
Trends Genet ; 37(7): 657-668, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33277042

RESUMEN

The nonsense-mediated mRNA decay (NMD) pathway degrades some but not all mRNAs bearing premature termination codons (PTCs). Decades of work have elucidated the molecular mechanisms of NMD. More recently, statistical analyses of large genomic datasets have allowed the importance of known and novel 'rules of NMD' to be tested and combined into methods that accurately predict whether PTC-containing mRNAs are degraded or not. We discuss these genomic approaches and how they can be applied to identify diseases and individuals that may benefit from inhibition or activation of NMD. We also discuss the importance of NMD for gene editing and tumor evolution, and how inhibiting NMD may be an effective strategy to increase the efficacy of cancer immunotherapy.


Asunto(s)
Empalme Alternativo/genética , Enfermedades Genéticas Congénitas/genética , Neoplasias/genética , Degradación de ARNm Mediada por Codón sin Sentido/genética , Codón sin Sentido/genética , Humanos , ARN Mensajero/genética
17.
Sci Adv ; 6(27)2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32937430

RESUMEN

Cell lines are commonly used as cancer models. The tissue of origin provides context for understanding biological mechanisms and predicting therapy response. We therefore systematically examined whether cancer cell lines exhibit features matching the presumed cancer type of origin. Gene expression and DNA methylation classifiers trained on ~9000 tumors identified 35 (of 614 examined) cell lines that better matched a different tissue or cell type than the one originally assigned. Mutational patterns further supported most reassignments. For instance, cell lines identified as originating from the skin often exhibited a UV mutational signature. We cataloged 366 "golden set" cell lines in which transcriptomic and epigenomic profiles strongly resemble the cancer type of origin, further proposing their assignments to subtypes. Accounting for the uncertain tissue of origin in cell line panels can change the interpretation of drug screening and genetic screening data, revealing previously unknown genomic determinants of sensitivity or resistance.


Asunto(s)
Epigenómica , Neoplasias , Línea Celular Tumoral , Perfilación de la Expresión Génica , Mutación , Neoplasias/genética , Transcriptoma
18.
Nat Genet ; 52(9): 958-968, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32747826

RESUMEN

Certain mutagens, including the APOBEC3 (A3) cytosine deaminase enzymes, can create multiple genetic changes in a single event. Activity of A3s results in striking 'mutation showers' occurring near DNA breakpoints; however, less is known about the mechanisms underlying the majority of A3 mutations. We classified the diverse patterns of clustered mutagenesis in tumor genomes, which identified a new A3 pattern: nonrecurrent, diffuse hypermutation (omikli). This mechanism occurs independently of the known focal hypermutation (kataegis), and is associated with activity of the DNA mismatch-repair pathway, which can provide the single-stranded DNA substrate needed by A3, and contributes to a substantial proportion of A3 mutations genome wide. Because mismatch repair is directed towards early-replicating, gene-rich chromosomal domains, A3 mutagenesis has a high propensity to generate impactful mutations, which exceeds that of other common carcinogens such as tobacco smoke and ultraviolet exposure. Cells direct their DNA repair capacity towards more important genomic regions; thus, carcinogens that subvert DNA repair can be remarkably potent.


Asunto(s)
Citidina Desaminasa/genética , Reparación de la Incompatibilidad de ADN/genética , Mutación/genética , Neoplasias/genética , Desaminasas APOBEC , Citosina Desaminasa/genética , ADN de Cadena Simple/genética , Genoma/genética , Humanos , Mutagénesis/genética
19.
Sci Data ; 7(1): 170, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32503990

RESUMEN

A synthesis of phenotypic and quantitative genomic traits is provided for bacteria and archaea, in the form of a scripted, reproducible workflow that standardizes and merges 26 sources. The resulting unified dataset covers 14 phenotypic traits, 5 quantitative genomic traits, and 4 environmental characteristics for approximately 170,000 strain-level and 15,000 species-aggregated records. It spans all habitats including soils, marine and fresh waters and sediments, host-associated and thermal. Trait data can find use in clarifying major dimensions of ecological strategy variation across species. They can also be used in conjunction with species and abundance sampling to characterize trait mixtures in communities and responses of traits along environmental gradients.


Asunto(s)
Archaea/genética , Bacterias/genética , Fenotipo , Ecosistema , Genoma Arqueal , Genoma Bacteriano
20.
Nat Genet ; 52(3): 306-319, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32024998

RESUMEN

About half of all cancers have somatic integrations of retrotransposons. Here, to characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 38 histological cancer subtypes within the framework of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project. We identified 19,166 somatically acquired retrotransposition events, which affected 35% of samples and spanned a range of event types. Long interspersed nuclear element (LINE-1; L1 hereafter) insertions emerged as the first most frequent type of somatic structural variation in esophageal adenocarcinoma, and the second most frequent in head-and-neck and colorectal cancers. Aberrant L1 integrations can delete megabase-scale regions of a chromosome, which sometimes leads to the removal of tumor-suppressor genes, and can induce complex translocations and large-scale duplications. Somatic retrotranspositions can also initiate breakage-fusion-bridge cycles, leading to high-level amplification of oncogenes. These observations illuminate a relevant role of L1 retrotransposition in remodeling the cancer genome, with potential implications for the development of human tumors.


Asunto(s)
Carcinogénesis/genética , Reordenamiento Génico/genética , Genoma Humano/genética , Elementos de Nucleótido Esparcido Largo/genética , Neoplasias/genética , Retroelementos/genética , Humanos , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...