Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Ethnopharmacol ; 114(3): 406-11, 2007 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-17884317

RESUMEN

The study of bioactivity of natural product is one of the major researches for drug discovery. The aim of this finding was to study the proliferation effect of Rhaphidophora korthalsii methanol extract on human PBMC and subsequently the cytotoxic effect of activated PBMC toward HepG2 human hepatocellular carcinoma. In this present study, MTT assay, cell cycle study and Annexin 5 binding assay were used to study the immunomodulatory and cytotoxic effects. In vitro cytotoxic screening of Rhaphidophora korthalsii methanol extract showed that the extract was non-toxic against hepatocellular carcinoma (HepG2). In contrast, the extract was able to stimulate the proliferation of human PBMC at 48 h and 72 h in MTT assay and cell cycle progress study. The application of immunomodulator in tumor research was studied by using MTT microcytotoxicity assay and flow cytometric Annexin V. Results indicated that pre-treated PBMC with Rhaphidophora korthalsii methanol extract induced the highest cytotoxicity (44.87+/-6.06% for MTT microcytotoxicity assay and 51.51+/-3.85% for Annexin V) toward HepG2. This finding demonstrates that Rhaphidophora korthalsii methanol extract are potent to stimulate the cytotoxic effect of immune cells toward HepG2.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Araceae , Citotoxicidad Inmunológica/efectos de los fármacos , Leucocitos Mononucleares/efectos de los fármacos , Extractos Vegetales/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Células Asesinas Naturales/inmunología , Leucocitos Mononucleares/inmunología
2.
Folia Microbiol (Praha) ; 46(3): 197-204, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11702403

RESUMEN

A study of the kinetics and performance of solvent-yielding batch fermentation of individual sugars and their mixture derived from enzymic hydrolysis of sago starch by Clostridium acetobutylicum showed that the use of 30 g/L gelatinized sago starch as the sole carbon source produced 11.2 g/L total solvent, i.e. 1.5-2 times more than with pure maltose or glucose used as carbon sources. Enzymic pretreatment of gelatinized sago starch yielding maltose and glucose hydrolyzates prior to the fermentation did not improve solvent production as compared to direct fermentation of gelatinized sago starch. The solvent yield of direct gelatinized sago starch fermentation depended on the activity and stability of amylolytic enzymes produced during the fermentation. The pH optima for alpha-amylase and glucoamylase were found to be at 5.3 and 4.0-4.4, respectively. alpha-Amylase showed a broad pH stability profile, retaining more than 80% of its maximum activity at pH 3.0-8.0 after a 1-d incubation at 37 degrees C. Since C. acetobutylicum alpha-amylase has a high activity and stability at low pH, this strain can potentially be employed in a one-step direct solvent-yielding fermentation of sago starch. However, the C. acetobutylicum glucoamylase was only stable at pH 4-5, maintaining more than 90% of its maximum activity after a 1-d incubation at 37 degrees C.


Asunto(s)
1-Butanol/metabolismo , Acetona/metabolismo , Clostridium/metabolismo , Etanol/metabolismo , Almidón/metabolismo , Amilasas/metabolismo , Anaerobiosis , Metabolismo de los Hidratos de Carbono , Carbono/metabolismo , Clostridium/crecimiento & desarrollo , Fermentación , Gelatina , Glucano 1,4-alfa-Glucosidasa/metabolismo , Hidrólisis , Solventes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...