Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Chem Biol ; 18(11): 2385-2393, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37824291

RESUMEN

Small molecules that target RNA and effect their cleavage are useful chemical probes and potential lead medicines. In this study, we investigate factors affecting degradation of two cancer-associated RNA targets, the mRNA that encodes the transcription factor JUN (c-Jun) and the hairpin precursor to microRNA-372 (pre-miR-372). The two RNA targets harbor the same small-molecule binding site juxtaposed with different neighboring structures. Specifically, pre-miR-372 has AU pairs and contiguous purines on one strand near the small-molecule binding site, making it an ideal substrate for oxidative cleavage via the direct degrader bleomycin A5. In contrast, while JUN mRNA has a similar number of AU pairs near the small-molecule binding site, it lacks contiguous purine nucleotides. Instead, it contains unpaired pyrimidine nucleotides, which are preferred substrates for RNase L, a ribonuclease that can be recruited to RNA with heterobifunctional ribonuclease targeting chimeras (RiboTACs). We hypothesized that structural features surrounding the binding site could be leveraged to program selective small-molecule degradation by alteration of the cleaving module. Indeed, the bleomycin degrader cleaves pre-miR-372 in gastric cancer cells but not JUN mRNA. Conversely, the RiboTAC cleaves JUN mRNA but not pre-miR-372. Thus, the selection of the appropriate cleaving effector moiety for an RNA-binding small molecule can be leveraged to cleave an RNA selectively in a predictable manner, which could have broad implications.


Asunto(s)
MicroARNs , ARN , ARN/metabolismo , Sitios de Unión , Ribonucleasas/metabolismo , MicroARNs/metabolismo , ARN Mensajero/genética
2.
J Med Chem ; 66(10): 6523-6541, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37186875

RESUMEN

Although fragment-based drug discovery (FBDD) has been successfully implemented and well-explored for protein targets, its feasibility for RNA targets is emerging. Despite the challenges associated with the selective targeting of RNA, efforts to integrate known methods of RNA binder discovery with fragment-based approaches have been fruitful, as a few bioactive ligands have been identified. Here, we review various fragment-based approaches implemented for RNA targets and provide insights into experimental design and outcomes to guide future work in the area. Indeed, investigations surrounding the molecular recognition of RNA by fragments address rather important questions such as the limits of molecular weight that confer selective binding and the physicochemical properties favorable for RNA binding and bioactivity.


Asunto(s)
Diseño de Fármacos , Descubrimiento de Drogas , Ligandos
3.
Nature ; 618(7963): 169-179, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225982

RESUMEN

Target occupancy is often insufficient to elicit biological activity, particularly for RNA, compounded by the longstanding challenges surrounding the molecular recognition of RNA structures by small molecules. Here we studied molecular recognition patterns between a natural-product-inspired small-molecule collection and three-dimensionally folded RNA structures. Mapping these interaction landscapes across the human transcriptome defined structure-activity relationships. Although RNA-binding compounds that bind to functional sites were expected to elicit a biological response, most identified interactions were predicted to be biologically inert as they bind elsewhere. We reasoned that, for such cases, an alternative strategy to modulate RNA biology is to cleave the target through a ribonuclease-targeting chimera, where an RNA-binding molecule is appended to a heterocycle that binds to and locally activates RNase L1. Overlay of the substrate specificity for RNase L with the binding landscape of small molecules revealed many favourable candidate binders that might be bioactive when converted into degraders. We provide a proof of concept, designing selective degraders for the precursor to the disease-associated microRNA-155 (pre-miR-155), JUN mRNA and MYC mRNA. Thus, small-molecule RNA-targeted degradation can be leveraged to convert strong, yet inactive, binding interactions into potent and specific modulators of RNA function.


Asunto(s)
Endorribonucleasas , MicroARNs , ARN Mensajero , Humanos , Genes jun/genética , Genes myc/genética , MicroARNs/antagonistas & inhibidores , MicroARNs/química , MicroARNs/genética , MicroARNs/metabolismo , Conformación de Ácido Nucleico , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Transcriptoma
5.
J Am Chem Soc ; 144(45): 20815-20824, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36322830

RESUMEN

RNA is challenging to target with bioactive small molecules, particularly those of low molecular weight that bind with sufficient affinity and specificity. In this report, we developed a platform to address this challenge, affording a novel bioactive interaction. An RNA-focused small-molecule fragment collection (n = 2500) was constructed by analyzing features in all publicly reported compounds that bind RNA, the largest collection of RNA-focused fragments to date. The RNA-binding landscape for each fragment was studied by using a library-versus-library selection with an RNA library displaying a discrete structural element, probing over 12.8 million interactions, the greatest number of interactions between fragments and biomolecules probed experimentally. Mining of this dataset across the human transcriptome defined a drug-like fragment that potently and specifically targeted the microRNA-372 hairpin precursor, inhibiting its processing into the mature, functional microRNA and alleviating invasive and proliferative oncogenic phenotypes in gastric cancer cells. Importantly, this fragment has favorable properties, including an affinity for the RNA target of 300 ± 130 nM, a molecular weight of 273 Da, and quantitative estimate of drug-likeness (QED) score of 0.8. (For comparison, the mean QED of oral medicines is 0.6 ± 0.2). Thus, these studies demonstrate that a low-molecular weight, fragment-like compound can specifically and potently modulate RNA targets.


Asunto(s)
MicroARNs , Bibliotecas de Moléculas Pequeñas , Humanos , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Peso Molecular , MicroARNs/metabolismo , Carcinogénesis
6.
J Am Chem Soc ; 144(26): 11620-11625, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35737519

RESUMEN

The interactions between cellular RNAs in MDA-MB-231 triple negative breast cancer cells and a panel of small molecules appended with a diazirine cross-linking moiety and an alkyne tag were probed transcriptome-wide in live cells. The alkyne tag allows for facile pull-down of cellular RNAs bound by each small molecule, and the enrichment of each RNA target defines the compound's molecular footprint. Among the 34 chemically diverse small molecules studied, six bound and enriched cellular RNAs. The most highly enriched interaction occurs between the novel RNA-binding compound F1 and a structured region in the 5' untranslated region of quiescin sulfhydryl oxidase 1 isoform a (QSOX1-a), not present in isoform b. Additional studies show that F1 specifically bound RNA over DNA and protein; that is, we studied the entire DNA, RNA, and protein interactome. This interaction was used to design a ribonuclease targeting chimera (RIBOTAC) to locally recruit Ribonuclease L to degrade QSOX1 mRNA in an isoform-specific manner, as QSOX1-a, but not QSOX1-b, mRNA and protein levels were reduced. The RIBOTAC alleviated QSOX1-mediated phenotypes in cancer cells. This approach can be broadly applied to discover ligands that bind RNA in cells, which could be bioactive themselves or augmented with functionality such as targeted degradation.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , ARN , Alquinos , Sitios de Unión , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasas/metabolismo , Transcriptoma
7.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35110406

RESUMEN

Nature evolves molecular interaction networks through persistent perturbation and selection, in stark contrast to drug discovery, which evaluates candidates one at a time by screening. Here, nature's highly parallel ligand-target search paradigm is recapitulated in a screen of a DNA-encoded library (DEL; 73,728 ligands) against a library of RNA structures (4,096 targets). In total, the screen evaluated ∼300 million interactions and identified numerous bona fide ligand-RNA three-dimensional fold target pairs. One of the discovered ligands bound a 5'GAG/3'CCC internal loop that is present in primary microRNA-27a (pri-miR-27a), the oncogenic precursor of microRNA-27a. The DEL-derived pri-miR-27a ligand was cell active, potently and selectively inhibiting pri-miR-27a processing to reprogram gene expression and halt an otherwise invasive phenotype in triple-negative breast cancer cells. By exploiting evolutionary principles at the earliest stages of drug discovery, it is possible to identify high-affinity and selective target-ligand interactions and predict engagements in cells that short circuit disease pathways in preclinical disease models.


Asunto(s)
ADN/genética , ARN no Traducido/genética , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Descubrimiento de Drogas/métodos , Expresión Génica/genética , Biblioteca de Genes , Humanos , Ligandos , MicroARNs/genética , Oncogenes/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética
8.
ACS Chem Biol ; 17(2): 474-482, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35044149

RESUMEN

The discovery of biofunctional natural products (NPs) has relied on the phenotypic screening of extracts and subsequent laborious work to dereplicate active NPs and define cellular targets. Herein, NPs present as crude extracts, partially purified fractions, and pure compounds were screened directly against molecular target libraries of RNA structural motifs in a library-versus-library fashion. We identified 21 hits with affinity for RNA, including one pure NP, nocathiacin I (NOC-I). The resultant data set of NOC-I-RNA fold interactions was mapped to the human transcriptome to define potential bioactive interactions. Interestingly, one of NOC-I's most preferred RNA folds is present in the nuclease processing site in the oncogenic, noncoding microRNA-18a, which NOC-I binds with low micromolar affinity. This affinity for the RNA translates into the selective inhibition of its nuclease processing in vitro and in prostate cancer cells, in which NOC-I also triggers apoptosis. In principle, adaptation of this combination of experimental and predictive approaches to dereplicate NPs from the other hits (extracts and partially purified fractions) could fundamentally transform the current paradigm and accelerate the discovery of NPs that bind RNA and their simultaneous correlation to biological targets.


Asunto(s)
Productos Biológicos , MicroARNs , Productos Biológicos/química , Humanos , ARN , Bibliotecas de Moléculas Pequeñas/farmacología
9.
Proc Natl Acad Sci U S A ; 117(52): 33197-33203, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318191

RESUMEN

RNAs have important functions that are dictated by their structure. Indeed, small molecules that interact with RNA structures can perturb function, serving as chemical probes and lead medicines. Here we describe the development of a fragment-based approach to discover and optimize bioactive small molecules targeting RNA. We extended the target validation method chemical cross-linking and isolation by pull-down (Chem-CLIP) to identify and map the binding sites of low molecular weight fragments that engage RNA or Chem-CLIP fragment mapping (Chem-CLIP-Frag-Map). Using Chem-CLIP-Frag-Map, we identified several fragments that bind the precursor to oncogenic microRNA-21 (pre-miR-21). Assembly of these fragments provided a specific bioactive compound with improved potency that inhibits pre-miR-21 processing, reducing mature miR-21 levels. The compound exerted selective effects on the transcriptome and selectively mitigated a miR-21-associated invasive phenotype in triple-negative breast cancer cells. The Chem-CLIP-Frag-Map approach should prove general to expedite the identification and optimization of small molecules that bind RNA targets.


Asunto(s)
Antineoplásicos/química , Descubrimiento de Drogas/métodos , MicroARNs/química , Bibliotecas de Moléculas Pequeñas/química , Antineoplásicos/farmacología , Línea Celular , Línea Celular Tumoral , Femenino , Humanos , Ligandos , MicroARNs/metabolismo , Simulación del Acoplamiento Molecular , Motivos de Nucleótidos , Bibliotecas de Moléculas Pequeñas/farmacología , Neoplasias de la Mama Triple Negativas/metabolismo
10.
ACS Cent Sci ; 6(10): 1713-1721, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33140033

RESUMEN

COVID-19 is a global pandemic, thus requiring multiple strategies to develop modalities against it. Herein, we designed multiple bioactive small molecules that target a functional structure within the SARS-CoV-2's RNA genome, the causative agent of COVID-19. An analysis to characterize the structure of the RNA genome provided a revised model of the SARS-CoV-2 frameshifting element, in particular its attenuator hairpin. By studying an RNA-focused small molecule collection, we identified a drug-like small molecule (C5) that avidly binds to the revised attenuator hairpin structure with a K d of 11 nM. The compound stabilizes the hairpin's folded state and impairs frameshifting in cells. The ligand was further elaborated into a ribonuclease targeting chimera (RIBOTAC) to recruit a cellular ribonuclease to destroy the viral genome (C5-RIBOTAC) and into a covalent molecule (C5-Chem-CLIP) that validated direct target engagement and demonstrated its specificity for the viral RNA, as compared to highly expressed host mRNAs. The RIBOTAC lead optimization strategy improved the bioactivity of the compound at least 10-fold. Collectively, these studies demonstrate that the SARS-CoV-2 RNA genome should be considered druggable.

11.
Curr Opin Chem Biol ; 56: 63-71, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32036231

RESUMEN

Given that many small molecules could bind to structured regions at sites that will not affect function, approaches that trigger degradation of RNA could provide a general way to affect biology. Indeed, targeted RNA degradation is an effective strategy to selectively and potently modulate biology. We describe several approaches to endow small molecules with the power to cleave RNAs. Central to these strategies is Inforna, which designs small molecules targeting RNA from human genome sequence. Inforna deduces the uniqueness of a druggable pocket, enables generation of hypotheses about functionality of the pocket, and defines on- and off-targets to drive compound optimization. RNA-binding compounds are then converted into cleavers that degrade the target directly or recruit an endogenous nuclease to do so. Cleaving compounds have significantly contributed to understanding and manipulating biological functions. Yet, there is much to be learned about how to affect human RNA biology with small molecules.


Asunto(s)
Estabilidad del ARN/efectos de los fármacos , ARN Interferente Pequeño/química , Bibliotecas de Moléculas Pequeñas/química , Secuencia de Bases , Bleomicina/análogos & derivados , Bleomicina/química , Bleomicina/farmacología , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Genoma , Humanos , Terapia Molecular Dirigida , Mutación , Conformación de Ácido Nucleico , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...