Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Plant Sci ; 348: 112206, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39096975

RESUMEN

Aldehyde Dehydrogenases (ALDH), a group of enzymes, are associated with the detoxification of aldehydes, produced in plants during abiotic stress conditions. Salinity remains a pivotal abiotic challenge that poses a significant threat to cultivation and yield of sugarcane. In this study, an Aldehyde dehydrogenase gene (EaALDH7) from Erianthus arundinaceus was overexpressed in the commercial sugarcane hybrid cultivar Co 86032. The transgenic lines were evaluated at different NaCl concentrations ranging from 0 mM to 200 mM for various morpho-physiological and biochemical parameters. The control plants, subjected to salinity stress condition, exhibited morphological changes in protoxylem, metaxylem, pericycle and pith whereas the transgenic events were on par with plants under regular irrigation. The overexpressing (OE) lines showed less cell membrane injury and improved photosynthetic rate, transpiration rate, and stomatal conductance than the untransformed control plants under stress conditions. Elevated proline content, higher activity of enzymatic antioxidants such as sodium dismutase (SOD), catalase (CAT), glutathione reductase (GR) and ascorbate peroxidase (APX) and low level of malondialdehyde MDA and hydrogen peroxide (H2O2) in the transgenic lines. The analysis of EaALDH7 expression revealed a significant upregulation in the transgenic lines compared to that of the untransformed control during salt stress conditions. The current study highlights the potentials of EaALDH7 gene in producing salinity-tolerant sugarcane cultivars.

2.
Genes (Basel) ; 14(6)2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37372327

RESUMEN

Plant nuclear factor (NF-Y) is a transcriptional activating factor composed of three subfamilies: NF-YA, NF-YB, and NF-YC. These transcriptional factors are reported to function as activators, suppressors, and regulators under different developmental and stress conditions in plants. However, there is a lack of systematic research on the NF-Y gene subfamily in sugarcane. In this study, 51 NF-Y genes (ShNF-Y), composed of 9 NF-YA, 18 NF-YB, and 24 NF-YC genes, were identified in sugarcane (Saccharum spp.). Chromosomal distribution analysis of ShNF-Ys in a Saccharum hybrid located the NF-Y genes on all 10 chromosomes. Multiple sequence alignment (MSA) of ShNF-Y proteins revealed conservation of core functional domains. Sixteen orthologous gene pairs were identified between sugarcane and sorghum. Phylogenetic analysis of NF-Y subunits of sugarcane, sorghum, and Arabidopsis showed that ShNF-YA subunits were equidistant while ShNF-YB and ShNF-YC subunits clustered distinctly, forming closely related and divergent groups. Expression profiling under drought treatment showed that NF-Y gene members were involved in drought tolerance in a Saccharum hybrid and its drought-tolerant wild relative, Erianthus arundinaceus. ShNF-YA5 and ShNF-YB2 genes had significantly higher expression in the root and leaf tissues of both plant species. Similarly, ShNF-YC9 had elevated expression in the leaf and root of E. arundinaceus and in the leaf of a Saccharum hybrid. These results provide valuable genetic resources for further sugarcane crop improvement programs.


Asunto(s)
Saccharum , Saccharum/genética , Saccharum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Genoma de Planta , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA