Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Alzheimers Dement (Amst) ; 15(4): e12508, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38058357

RESUMEN

INTRODUCTION: Disease-modifying therapies (DMTs) for Alzheimer's disease (AD) will increase diagnostic demand. A non-invasive blood-based biomarker (BBBM) test for detection of amyloid-ß pathology may reduce diagnostic barriers and facilitate DMT initiation. OBJECTIVE: To explore heterogeneity in AD care pathways and potential role of BBBM tests. METHODS: Survey of 213 healthcare professionals/payers in US/China/UK/Germany/Spain/France and two advisory boards (US/Europe). RESULTS: Current diagnostic pathways are heterogeneous, meaning many AD patients are missed while low-risk patients undergo unnecessary procedures. Confirmatory amyloid testing (cerebrospinal fluid biomarkers/positron emission tomography) is utilized in few patients, resulting in diagnostic/treatment delays. A high negative-predictive-value test could streamline the diagnostic pathway by reducing unnecessary procedures in low-risk patients; supporting confirmatory testing where needed. Imminent approval of DMTs will increase need for fast and reliable AD diagnostic tests. DISCUSSION: An easy-to-use, accurate, non-invasive BBBM test for amyloid pathology could guide diagnostic procedures or referral, streamlining early diagnosis and DMT initiation. Highlights: This study explored AD care pathways and how BBBM may meet diagnostic demandsCurrent diagnostic pathways are heterogeneous, with country and setting variationsMany AD patients are missed, while low-risk patients undergo unnecessary proceduresAn easy-to-use, accurate, non-invasive BBBM test for amyloid pathology is neededThis test could streamline early diagnosis of amyloid pathology and DMT initiation.

2.
Sci Rep ; 13(1): 18924, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963908

RESUMEN

Age-related disease may be mediated by low levels of chronic inflammation ("inflammaging"). Recent work suggests that gut microbes can contribute to inflammation via degradation of the intestinal barrier. While aging and age-related diseases including Alzheimer's disease (AD) are linked to altered microbiome composition and higher levels of gut microbial components in systemic circulation, the role of intestinal inflammation remains unclear. To investigate whether greater gut inflammation is associated with advanced age and AD pathology, we assessed fecal samples from older adults to measure calprotectin, an established marker of intestinal inflammation which is elevated in diseases of gut barrier integrity. Multiple regression with maximum likelihood estimation and Satorra-Bentler corrections were used to test relationships between fecal calprotectin and clinical diagnosis, participant age, cerebrospinal fluid biomarkers of AD pathology, amyloid burden measured using 11C-Pittsburgh compound B positron emission tomography (PiB PET) imaging, and performance on cognitive tests measuring executive function and verbal learning and recall. Calprotectin levels were elevated in advanced age and were higher in participants diagnosed with amyloid-confirmed AD dementia. Additionally, among individuals with AD dementia, higher calprotectin was associated with greater amyloid burden as measured with PiB PET. Exploratory analyses indicated that calprotectin levels were also associated with cerebrospinal fluid markers of AD, and with lower verbal memory function even among cognitively unimpaired participants. Taken together, these findings suggest that intestinal inflammation is linked with brain pathology even in the earliest disease stages. Moreover, intestinal inflammation may exacerbate the progression toward AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Enfermedad de Alzheimer/metabolismo , Estudios de Cohortes , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Tomografía Computarizada por Rayos X , Tomografía de Emisión de Positrones/métodos , Amiloide/metabolismo , Complejo de Antígeno L1 de Leucocito/metabolismo , Biomarcadores/metabolismo , Proteínas tau/metabolismo , Disfunción Cognitiva/patología
3.
Alzheimers Res Ther ; 15(1): 180, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848950

RESUMEN

BACKGROUND: Alzheimer's disease involves accumulating amyloid (A) and tau (T) pathology, and progressive neurodegeneration (N), leading to the development of the AD clinical syndrome. While several markers of N have been proposed, efforts to define normal vs. abnormal neurodegeneration based on neuroimaging have been limited. Sensitive markers that may account for or predict cognitive dysfunction for individuals in early disease stages are critical. METHODS: Participants (n = 296) defined on A and T status and spanning the AD-clinical continuum underwent multi-shell diffusion-weighted magnetic resonance imaging to generate Neurite Orientation Dispersion and Density Imaging (NODDI) metrics, which were tested as markers of N. To better define N, we developed age- and sex-adjusted robust z-score values to quantify normal and AD-associated (abnormal) neurodegeneration in both cortical gray matter and subcortical white matter regions of interest. We used general logistic regression with receiver operating characteristic (ROC) and area under the curve (AUC) analysis to test whether NODDI metrics improved diagnostic accuracy compared to models that only relied on cerebrospinal fluid (CSF) A and T status (alone and in combination). RESULTS: Using internal robust norms, we found that NODDI metrics correlate with worsening cognitive status and that NODDI captures early, AD neurodegenerative pathology in the gray matter of cognitively unimpaired, but A/T biomarker-positive, individuals. NODDI metrics utilized together with A and T status improved diagnostic prediction accuracy of AD clinical status, compared with models using CSF A and T status alone. CONCLUSION: Using a robust norms approach, we show that abnormal AD-related neurodegeneration can be detected among cognitively unimpaired individuals. Metrics derived from diffusion-weighted imaging are potential sensitive markers of N and could be considered for trial enrichment and as outcomes in clinical trials. However, given the small sample sizes, the exploratory nature of the work must be acknowledged.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Neuroimagen/métodos , Disfunción Cognitiva/diagnóstico , Biomarcadores/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo
4.
Alzheimers Dement ; 19(12): 5805-5816, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37694991

RESUMEN

INTRODUCTION: Many people with cognitive complaints or impairment never receive an accurate diagnosis of the underlying condition, potentially impacting their access to appropriate treatment. To address this unmet need, plasma biomarker tests are being developed for use in Alzheimer's disease (AD). Plasma biomarker tests span various stages of development, including in vitro diagnostic devices (or tests) (IVDs), laboratory-developed tests (LDTs) and research use only devices (or tests) (RUOs). Understanding the differences between each test type is important for appropriate implementation into the AD diagnostic pathway and care continuum. METHODS: Authors reviewed scientific literature (PubMed, meeting abstracts and presentations, company press releases and websites) on AD plasma biomarkers. RESULTS: This article defines IVDs, LDTs, and RUOs, discusses potential clinical applications and highlights the steps necessary for their clinical implementation. DISCUSSION: Plasma biomarkers could revolutionize many areas of the AD diagnostic pathway and care continuum, but further research is needed. HIGHLIGHTS: There is a need for a minimally invasive Alzheimer's disease (AD) diagnostic tool. AD plasma biomarker tests exist at various stages of commercial development. Understanding the development stage of a test is important for its appropriate use. Plasma biomarker tests could function as a triage tool to streamline AD diagnosis. Further steps remain before AD plasma biomarkers can be used routinely.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Biomarcadores , Disfunción Cognitiva/diagnóstico , Péptidos beta-Amiloides
5.
Front Aging Neurosci ; 15: 1214932, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719875

RESUMEN

Introduction: Metabolomics technology facilitates studying associations between small molecules and disease processes. Correlating metabolites in cerebrospinal fluid (CSF) with Alzheimer's disease (AD) CSF biomarkers may elucidate additional changes that are associated with early AD pathology and enhance our knowledge of the disease. Methods: The relative abundance of untargeted metabolites was assessed in 161 individuals from the Wisconsin Registry for Alzheimer's Prevention. A metabolome-wide association study (MWAS) was conducted between 269 CSF metabolites and protein biomarkers reflecting brain amyloidosis, tau pathology, neuronal and synaptic degeneration, and astrocyte or microglial activation and neuroinflammation. Linear mixed-effects regression analyses were performed with random intercepts for sample relatedness and repeated measurements and fixed effects for age, sex, and years of education. The metabolome-wide significance was determined by a false discovery rate threshold of 0.05. The significant metabolites were replicated in 154 independent individuals from then Wisconsin Alzheimer's Disease Research Center. Mendelian randomization was performed using genome-wide significant single nucleotide polymorphisms from a CSF metabolites genome-wide association study. Results: Metabolome-wide association study results showed several significantly associated metabolites for all the biomarkers except Aß42/40 and IL-6. Genetic variants associated with metabolites and Mendelian randomization analysis provided evidence for a causal association of metabolites for soluble triggering receptor expressed on myeloid cells 2 (sTREM2), amyloid ß (Aß40), α-synuclein, total tau, phosphorylated tau, and neurogranin, for example, palmitoyl sphingomyelin (d18:1/16:0) for sTREM2, and erythritol for Aß40 and α-synuclein. Discussion: This study provides evidence that CSF metabolites are associated with AD-related pathology, and many of these associations may be causal.

6.
JAMA Neurol ; 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37523162

RESUMEN

Importance: Knowledge is lacking on the prevalence and prognosis of individuals with a ß-amyloid-negative, tau-positive (A-T+) cerebrospinal fluid (CSF) biomarker profile. Objective: To estimate the prevalence of a CSF A-T+ biomarker profile and investigate its clinical implications. Design, Setting, and Participants: This was a retrospective cohort study of the cross-sectional multicenter University of Gothenburg (UGOT) cohort (November 2019-January 2021), the longitudinal multicenter Alzheimer Disease Neuroimaging Initiative (ADNI) cohort (individuals with mild cognitive impairment [MCI] and no cognitive impairment; September 2005-May 2022), and 2 Wisconsin cohorts, Wisconsin Alzheimer Disease Research Center and Wisconsin Registry for Alzheimer Prevention (WISC; individuals without cognitive impairment; February 2007-November 2020). This was a multicenter study, with data collected from referral centers in clinical routine (UGOT) and research settings (ADNI and WISC). Eligible individuals had 1 lumbar puncture (all cohorts), 2 or more cognitive assessments (ADNI and WISC), and imaging (ADNI only) performed on 2 separate occasions. Data were analyzed on August 2022 to April 2023. Exposures: Baseline CSF Aß42/40 and phosphorylated tau (p-tau)181; cognitive tests (ADNI: modified preclinical Alzheimer cognitive composite [mPACC]; WISC: modified 3-test PACC [PACC-3]). Exposures in the ADNI cohort included [18F]-florbetapir amyloid positron emission tomography (PET), magnetic resonance imaging (MRI), [18F]-fluorodeoxyglucose PET (FDG-PET), and cross-sectional tau-PET (ADNI: [18F]-flortaucipir, WISC: [18F]-MK6240). Main Outcomes and Measures: Primary outcomes were the prevalence of CSF AT biomarker profiles and continuous longitudinal global cognitive outcome and imaging biomarker trajectories in A-T+ vs A-T- groups. Secondary outcomes included cross-sectional tau-PET. Results: A total of 7679 individuals (mean [SD] age, 71.0 [8.4] years; 4101 male [53%]) were included in the UGOT cohort, 970 individuals (mean [SD] age, 73 [7.0] years; 526 male [54%]) were included in the ADNI cohort, and 519 individuals (mean [SD] age, 60 [7.3] years; 346 female [67%]) were included in the WISC cohort. The prevalence of an A-T+ profile in the UGOT cohort was 4.1% (95% CI, 3.7%-4.6%), being less common than the other patterns. Longitudinally, no significant differences in rates of worsening were observed between A-T+ and A-T- profiles for cognition or imaging biomarkers. Cross-sectionally, A-T+ had similar tau-PET uptake to individuals with an A-T- biomarker profile. Conclusion and Relevance: Results suggest that the CSF A-T+ biomarker profile was found in approximately 5% of lumbar punctures and was not associated with a higher rate of cognitive decline or biomarker signs of disease progression compared with biomarker-negative individuals.

7.
J Alzheimers Dis Rep ; 7(1): 659-674, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483324

RESUMEN

Background: Diagnostic pathways for patients presenting with cognitive complaints may vary across geographies. Objective: To describe diagnostic pathways of patients presenting with cognitive complaints across 6 countries. Methods: This real-world, cross-sectional study analyzed chart-extracted data from healthcare providers (HCPs) for 6,744 patients across China, France, Germany, Spain, UK, and the US. Results: Most common symptoms at presentation were cognitive (memory/amnestic; 89.86%), followed by physical/behavioral (87.13%). Clinical/cognitive tests were used in > 95%, with Mini-Mental State Examination being the most common cognitive test (79.0%). Blood tests for APOE ɛ4/other mutations, or to rule out treatable causes, were used in half of the patients. Clinical and cognitive tests were used at higher frequency at earlier visits, and amyloid PET/CSF biomarker testing at higher frequency at later visits. The latter were ordered at low rates even by specialists (across countries, 5.7% to 28.7% for amyloid PET and 5.0% to 27.3% for CSF testing). Approximately half the patients received a diagnosis (52.1% of which were Alzheimer's disease [AD]). Factors that influenced risk of not receiving a diagnosis were HCP type (higher for primary care physicians versus specialists) and region (highest in China and Germany). Conclusion: These data highlight variability in AD diagnostic pathways across countries and provider types. About 45% of patients are referred/told to 'watch and wait'. Improvements can be made in the use of amyloid PET and CSF testing. Efforts should focus on further defining biomarkers for those at risk for AD, and on dismantling barriers such low testing capacity and reimbursement challenges.

8.
Brain Commun ; 5(3): fcad180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377978

RESUMEN

Chronic systemic inflammation increases the risk of neurodegeneration, but the mechanisms remain unclear. Part of the challenge in reaching a nuanced understanding is the presence of multiple risk factors that interact to potentiate adverse consequences. To address modifiable risk factors and mitigate downstream effects, it is necessary, although difficult, to tease apart the contribution of an individual risk factor by accounting for concurrent factors such as advanced age, cardiovascular risk, and genetic predisposition. Using a case-control design, we investigated the influence of asthma, a highly prevalent chronic inflammatory disease of the airways, on brain health in participants recruited to the Wisconsin Alzheimer's Disease Research Center (31 asthma patients, 186 non-asthma controls, aged 45-90 years, 62.2% female, 92.2% cognitively unimpaired), a sample enriched for parental history of Alzheimer's disease. Asthma status was determined using detailed prescription information. We employed multi-shell diffusion weighted imaging scans and the three-compartment neurite orientation dispersion and density imaging model to assess white and gray matter microstructure. We used cerebrospinal fluid biomarkers to examine evidence of Alzheimer's disease pathology, glial activation, neuroinflammation and neurodegeneration. We evaluated cognitive changes over time using a preclinical Alzheimer cognitive composite. Using permutation analysis of linear models, we examined the moderating influence of asthma on relationships between diffusion imaging metrics, CSF biomarkers, and cognitive decline, controlling for age, sex, and cognitive status. We ran additional models controlling for cardiovascular risk and genetic risk of Alzheimer's disease, defined as a carrier of at least one apolipoprotein E (APOE) ε4 allele. Relative to controls, greater Alzheimer's disease pathology (lower amyloid-ß42/amyloid-ß40, higher phosphorylated-tau-181) and synaptic degeneration (neurogranin) biomarker concentrations were associated with more adverse white matter metrics (e.g. lower neurite density, higher mean diffusivity) in patients with asthma. Higher concentrations of the pleiotropic cytokine IL-6 and the glial marker S100B were associated with more salubrious white matter metrics in asthma, but not in controls. The adverse effects of age on white matter integrity were accelerated in asthma. Finally, we found evidence that in asthma, relative to controls, deterioration in white and gray matter microstructure was associated with accelerated cognitive decline. Taken together, our findings suggest that asthma accelerates white and gray matter microstructural changes associated with aging and increasing neuropathology, that in turn, are associated with more rapid cognitive decline. Effective asthma control, on the other hand, may be protective and slow progression of cognitive symptoms.

9.
Alzheimers Dement ; 19(12): 5447-5470, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37218097

RESUMEN

INTRODUCTION: A hallmark of Alzheimer's disease (AD) is the aggregation of proteins (amyloid beta [A] and hyperphosphorylated tau [T]) in the brain, making cerebrospinal fluid (CSF) proteins of particular interest. METHODS: We conducted a CSF proteome-wide analysis among participants of varying AT pathology (n = 137 participants; 915 proteins) with nine CSF biomarkers of neurodegeneration and neuroinflammation. RESULTS: We identified 61 proteins significantly associated with the AT category (P < 5.46 × 10-5 ) and 636 significant protein-biomarker associations (P < 6.07 × 10-6 ). Proteins from glucose and carbon metabolism pathways were enriched among amyloid- and tau-associated proteins, including malate dehydrogenase and aldolase A, whose associations with tau were replicated in an independent cohort (n = 717). CSF metabolomics identified and replicated an association of succinylcarnitine with phosphorylated tau and other biomarkers. DISCUSSION: These results implicate glucose and carbon metabolic dysregulation and increased CSF succinylcarnitine levels with amyloid and tau pathology in AD. HIGHLIGHTS: Cerebrospinal fluid (CSF) proteome enriched for extracellular, neuronal, immune, and protein processing. Glucose/carbon metabolic pathways enriched among amyloid/tau-associated proteins. Key glucose/carbon metabolism protein associations independently replicated. CSF proteome outperformed other omics data in predicting amyloid/tau positivity. CSF metabolomics identified and replicated a succinylcarnitine-phosphorylated tau association.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Proteoma , Proteínas tau/líquido cefalorraquídeo , Amiloide/metabolismo , Biomarcadores/líquido cefalorraquídeo , Metaboloma , Fragmentos de Péptidos/líquido cefalorraquídeo
10.
Elife ; 122023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37067031

RESUMEN

Brain-age can be inferred from structural neuroimaging and compared to chronological age (brain-age delta) as a marker of biological brain aging. Accelerated aging has been found in neurodegenerative disorders like Alzheimer's disease (AD), but its validation against markers of neurodegeneration and AD is lacking. Here, imaging-derived measures from the UK Biobank dataset (N=22,661) were used to predict brain-age in 2,314 cognitively unimpaired (CU) individuals at higher risk of AD and mild cognitive impaired (MCI) patients from four independent cohorts with available biomarker data: ALFA+, ADNI, EPAD, and OASIS. Brain-age delta was associated with abnormal amyloid-ß, more advanced stages (AT) of AD pathology and APOE-ε4 status. Brain-age delta was positively associated with plasma neurofilament light, a marker of neurodegeneration, and sex differences in the brain effects of this marker were found. These results validate brain-age delta as a non-invasive marker of biological brain aging in non-demented individuals with abnormal levels of biomarkers of AD and axonal injury.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Masculino , Femenino , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Péptidos beta-Amiloides/metabolismo , Neuroimagen/métodos , Biomarcadores , Aprendizaje Automático
11.
Eur J Epidemiol ; 38(5): 559-571, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36964431

RESUMEN

Modifiable factors can influence the risk for Alzheimer's disease (AD) and serve as targets for intervention; however, the biological mechanisms linking these factors to AD are unknown. This study aims to identify plasma metabolites associated with modifiable factors for AD, including MIND diet, physical activity, smoking, and caffeine intake, and test their association with AD endophenotypes to identify their potential roles in pathophysiological mechanisms. The association between each of the 757 plasma metabolites and four modifiable factors was tested in the wisconsin registry for Alzheimer's prevention cohort of initially cognitively unimpaired, asymptomatic middle-aged adults. After Bonferroni correction, the significant plasma metabolites were tested for association with each of the AD endophenotypes, including twelve cerebrospinal fluid (CSF) biomarkers, reflecting key pathophysiologies for AD, and four cognitive composite scores. Finally, causal mediation analyses were conducted to evaluate possible mediation effects. Analyses were performed using linear mixed-effects regression. A total of 27, 3, 23, and 24 metabolites were associated with MIND diet, physical activity, smoking, and caffeine intake, respectively. Potential mediation effects include beta-cryptoxanthin in the association between MIND diet and preclinical Alzheimer cognitive composite score, hippurate between MIND diet and immediate learning, glutamate between physical activity and CSF neurofilament light, and beta-cryptoxanthin between smoking and immediate learning. Our study identified several plasma metabolites that are associated with modifiable factors. These metabolites can be employed as biomarkers for tracking these factors, and they provide a potential biological pathway of how modifiable factors influence the human body and AD risk.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Endofenotipos , Adulto , Humanos , Persona de Mediana Edad , Péptidos beta-Amiloides/metabolismo , beta-Criptoxantina , Biomarcadores , Cafeína/efectos adversos , Factores de Riesgo , Proteínas tau
12.
J Alzheimers Dis ; 92(2): 395-409, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36744333

RESUMEN

BACKGROUND: Our understanding of the pathophysiology underlying Alzheimer's disease (AD) has benefited from genomic analyses, including those that leverage polygenic risk score (PRS) models of disease. The use of functional annotation has been able to improve the power of genomic models. OBJECTIVE: We sought to leverage genomic functional annotations to build tissue-specific AD PRS models and study their relationship with AD and its biomarkers. METHODS: We built 13 tissue-specific AD PRS and studied the scores' relationships with AD diagnosis, cerebrospinal fluid (CSF) amyloid, CSF tau, and other CSF biomarkers in two longitudinal cohort studies of AD. RESULTS: The AD PRS model that was most predictive of AD diagnosis (even without APOE) was the liver AD PRS: n = 1,115; odds ratio = 2.15 (1.67-2.78), p = 3.62×10-9. The liver AD PRS was also statistically significantly associated with cerebrospinal fluid biomarker evidence of amyloid-ß (Aß42:Aß40 ratio, p = 3.53×10-6) and the phosphorylated tau:amyloid-ß ratio (p = 1.45×10-5). CONCLUSION: These findings provide further evidence of the role of the liver-functional genome in AD and the benefits of incorporating functional annotation into genomic research.


Asunto(s)
Enfermedad de Alzheimer , Hígado , Herencia Multifactorial , Adulto , Anciano , Humanos , Persona de Mediana Edad , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Genoma Humano , Genómica , Hígado/metabolismo , Estudios Longitudinales , Modelos Genéticos , Herencia Multifactorial/genética , Especificidad de Órganos , Factores de Riesgo
13.
Alzheimers Dement ; 19(8): 3406-3416, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36795776

RESUMEN

INTRODUCTION: Apolipoprotein E (APOE) ε4-carrier status or ε4 allele count are included in analyses to account for the APOE genetic effect on Alzheimer's disease (AD); however, this does not account for protective effects of APOE ε2 or heterogeneous effect of ε2, ε3, and ε4 haplotypes. METHODS: We leveraged results from an autopsy-confirmed AD study to generate a weighted risk score for APOE (APOE-npscore). We regressed cerebrospinal fluid (CSF) amyloid and tau biomarkers on APOE variables from the Wisconsin Registry for Alzheimer's Prevention (WRAP), Wisconsin Alzheimer's Disease Research Center (WADRC), and Alzheimer's Disease Neuroimaging Initiative (ADNI). RESULTS: The APOE-npscore explained more variance and provided a better model fit for all three CSF measures than APOE ε4-carrier status and ε4 allele count. These findings were replicated in ADNI and observed in subsets of cognitively unimpaired (CU) participants. DISCUSSION: The APOE-npscore reflects the genetic effect on neuropathology and provides an improved method to account for APOE in AD-related analyses.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Genotipo , Factores de Riesgo , Proteínas tau/genética , Proteínas tau/líquido cefalorraquídeo
14.
Cortex ; 159: 167-174, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36630749

RESUMEN

Recency refers to the information learned at the end of a study list or task. Recency forgetting, as tracked by the ratio between recency recall in immediate and delayed conditions, i.e., the recency ratio (Rr), has been applied to list-learning tasks, demonstrating its efficacy in predicting cognitive decline, conversion to mild cognitive impairment (MCI), and cerebrospinal fluid (CSF) biomarkers of neurodegeneration. However, little is known as to whether Rr can be effectively applied to story recall tasks. To address this question, data were extracted from the database of the Alzheimer's Disease Research Center at the University of Wisconsin - Madison. A total of 212 participants were included in the study. CSF biomarkers were amyloid-beta (Aß) 40 and 42, phosphorylated (p) and total (t) tau, neurofilament light (NFL), neurogranin (Ng), and α-synuclein (a-syn). Story Recall was measured with the Logical Memory Test (LMT). We carried out Bayesian regression analyses with Rr, and other LMT scores as predictors; and CSF biomarkers (including the Aß42/40 and p-tau/Aß42 ratios) as outcomes. Results showed that models including Rr consistently provided best fits with the data, with few exceptions. These findings demonstrate the applicability of Rr to story recall and its sensitivity to CSF biomarkers of neurodegeneration, and encourage its inclusion when evaluating risk of neurodegeneration with story recall.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides , Teorema de Bayes , Biomarcadores , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/psicología , Proteínas tau , Neuronas
15.
J Neurochem ; 165(1): 95-105, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36625424

RESUMEN

An unmet need exists for reliable plasma biomarkers of amyloid pathology, in the clinical laboratory setting, to streamline diagnosis of Alzheimer's disease (AD). For routine clinical use, a biomarker must provide robust and reliable results under pre-analytical sample handling conditions. We investigated the impact of different pre-analytical sample handling procedures on the levels of seven plasma biomarkers in development for potential routine use in AD. Using (1) fresh (never frozen) and (2) previously frozen plasma, we evaluated the effects of (A) storage time and temperature, (B) freeze/thaw (F/T) cycles, (C) anticoagulants, (D) tube transfer, and (E) plastic tube types. Blood samples were prospectively collected from patients with cognitive impairment undergoing investigation in a memory clinic. ß-amyloid 1-40 (Aß40), ß-amyloid 1-42 (Aß42), apolipoprotein E4, glial fibrillary acidic protein, neurofilament light chain, phosphorylated-tau (phospho-tau) 181, and phospho-tau-217 were measured using Elecsys® plasma prototype immunoassays. Recovery signals for each plasma biomarker and sample handling parameter were calculated. For all plasma biomarkers measured, pre-analytical effects were comparable between fresh (never frozen) and previously frozen samples. All plasma biomarkers tested were stable for ≤24 h at 4°C when stored as whole blood and ethylenediaminetetraacetic acid (EDTA) plasma. Recovery signals were acceptable for up to five tube transfers, or two F/T cycles, and in both polypropylene and low-density polyethylene tubes. For all plasma biomarkers except Aß42 and Aß40, analyte levels were largely comparable between EDTA, lithium heparin, and sodium citrate tubes. Aß42 and Aß40 were most sensitive to pre-analytical handling, and the effects could only be partially compensated by the Aß42/Aß40 ratio. We provide recommendations for an optimal sample handling protocol for analysis of plasma biomarkers for amyloid pathology AD, to improve the reproducibility of future studies on plasma biomarkers assays and for potential use in routine clinical practice.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Reproducibilidad de los Resultados , Ácido Edético , Péptidos beta-Amiloides , Biomarcadores , Manejo de Especímenes , Proteínas tau , Fragmentos de Péptidos
16.
Alzheimers Res Ther ; 15(1): 25, 2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36709293

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a complex and heterogeneous disease, which requires reliable biomarkers for diagnosis and monitoring disease activity. Preanalytical protocol and technical variability associated with biomarker immunoassays makes comparability of biomarker data across multiple cohorts difficult. This study aimed to compare cerebrospinal fluid (CSF) biomarker results across independent cohorts, including participants spanning the AD continuum. METHODS: Measured on the NeuroToolKit (NTK) prototype panel of immunoassays, 12 CSF biomarkers were evaluated from three cohorts (ALFA+, Wisconsin, and Abby/Blaze). A correction factor was applied to biomarkers found to be affected by preanalytical procedures (amyloid-ß1-42, amyloid-ß1-40, and alpha-synuclein), and results between cohorts for each disease stage were compared. The relationship between CSF biomarker concentration and cognitive scores was evaluated. RESULTS: Biomarker distributions were comparable across cohorts following correction. Correlations of biomarker values were consistent across cohorts, regardless of disease stage. Disease stage differentiation was highest for neurofilament light (NfL), phosphorylated tau, and total tau, regardless of the cohort. Correlation between biomarker concentration and cognitive scores was comparable across cohorts, and strongest for NfL, chitinase-3-like protein-1 (YKL40), and glial fibrillary acidic protein. DISCUSSION: The precision of the NTK enables merging of biomarker datasets, after correction for preanalytical confounders. Assessment of multiple cohorts is crucial to increase power in future studies into AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Proteínas tau/líquido cefalorraquídeo , Enfermedades Neurodegenerativas/diagnóstico , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo
17.
Alzheimers Dement ; 19(4): 1204-1215, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35950735

RESUMEN

INTRODUCTION: There is a great need for fully automated plasma assays that can measure amyloid beta (Aß) pathology and predict future Alzheimer's disease (AD) dementia. METHODS: Two cohorts (n = 920) were examined: Panel A+ (n = 32 cognitively unimpaired [CU], n = 106 mild cognitive impairment [MCI], and n = 89 AD) and BioFINDER-1 (n = 461 CU, n = 232 MCI). Plasma Aß42/Aß40, phosphorylated tau (p-tau)181, two p-tau217 variants, ApoE4 protein, neurofilament light, and GFAP were measured using Elecsys prototype immunoassays. RESULTS: The best biomarker for discriminating Aß-positive versus Aß-negative participants was Aß42/Aß40 (are under the curve [AUC] 0.83-0.87). Combining Aß42/Aß40, p-tau181, and ApoE4 improved the AUCs significantly (0.90 to 0.93; P< 0.01). Adding additional biomarkers had marginal effects (ΔAUC ≤0.01). In BioFINDER, p-tau181, p-tau217, and ApoE4 predicted AD dementia within 6 years in CU (AUC 0.88) and p-tau181, p-tau217, and Aß42/Aß40 in MCI (AUC 0.87). DISCUSSION: The high accuracies for Aß pathology and future AD dementia using fully automated instruments are promising for implementing plasma biomarkers in clinical trials and clinical routine.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Proteínas tau , Biomarcadores , Disfunción Cognitiva/diagnóstico
18.
Alzheimers Dement ; 19(4): 1393-1402, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36150024

RESUMEN

INTRODUCTION: Further evidence is needed to support the use of plasma amyloid ß (Aß) biomarkers as Alzheimer's disease prescreening tools. This study evaluated the clinical performance and robustness of plasma Aß42 /Aß40 for amyloid positivity prescreening. METHODS: Data were collected from 333 BioFINDER and 121 Alzheimer's Disease Neuroimaging Initiative study participants. Risk and predictive values versus percentile of plasma Aß42 /Aß40 evaluated the actionability of plasma Aß42 /Aß40 , and simulations modeled the impact of potential uncertainties and biases. Amyloid PET was the brain amyloidosis reference standard. RESULTS: Elecsys plasma Aß42 /Aß40 could potentially rule out amyloid pathology in populations with low-to-moderate amyloid positivity prevalence. However, simulations showed small measurement or pre-analytical errors in Aß42 and/or Aß40 cause misclassifications, impacting sensitivity or specificity. The minor fold change between amyloid PET positive and negative cases explains the biomarkers low robustness. DISCUSSION: Implementing plasma Aß42 /Aß40 for routine clinical use may pose significant challenges, with misclassification risks. HIGHLIGHTS: Plasma Aß42 /Aß40 ruled out amyloid PET positivity in a setting of low amyloid-positive prevalence. Including (pre-) analytical errors or measurement biases caused misclassifications. Plasma Aß42 /Aß40 had a low inherent dynamic range, independent of analytical method. Other blood biomarkers may be easier to implement as robust prescreening tools.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Humanos , Péptidos beta-Amiloides , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/metabolismo , Biomarcadores , Amiloide/metabolismo , Fragmentos de Péptidos
19.
Alzheimers Dement (Amst) ; 14(1): e12381, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36479018

RESUMEN

Introduction: White matter (WM) degeneration is a critical component of early Alzheimer's disease (AD) pathophysiology. Diffusion-weighted imaging (DWI) models, including diffusion tensor imaging (DTI), neurite orientation dispersion and density imaging (NODDI), and mean apparent propagator MRI (MAP-MRI), have the potential to identify early neurodegenerative WM changes associated with AD. Methods: We imaged 213 (198 cognitively unimpaired) aging adults with DWI and used tract-based spatial statistics to compare 15 DWI metrics of WM microstructure to 9 cerebrospinal fluid (CSF) markers of AD pathology and neurodegeneration treated as continuous variables. Results: We found widespread WM injury in AD, as indexed by robust associations between DWI metrics and CSF biomarkers. MAP-MRI had more spatially diffuse relationships with Aß42/40 and pTau, compared with NODDI and DTI. Discussion: Our results suggest that WM degeneration may be more pervasive in AD than is commonly appreciated and that innovative DWI models such as MAP-MRI may provide clinically viable biomarkers of AD-related neurodegeneration in the earliest stages of AD progression.

20.
Alzheimers Res Ther ; 14(1): 167, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36345036

RESUMEN

Telomere length (TL) is associated with biological aging, consequently influencing the risk of age-related diseases such as Alzheimer's disease (AD). We aimed to evaluate the potential causal role of TL in AD endophenotypes (i.e., cognitive performance, N = 2233; brain age and AD-related signatures, N = 1134; and cerebrospinal fluid biomarkers (CSF) of AD and neurodegeneration, N = 304) through a Mendelian randomization (MR) analysis. Our analysis was conducted in the context of the ALFA (ALzheimer and FAmilies) study, a population of cognitively healthy individuals at risk of AD. A total of 20 single nucleotide polymorphisms associated with TL were used to determine the effect of TL on AD endophenotypes. Analyses were adjusted by age, sex, and years of education. Stratified analyses by APOE-ɛ4 status and polygenic risk score of AD were conducted. MR analysis revealed significant associations between genetically predicted longer TL and lower levels of CSF Aß and higher levels of CSF NfL only in APOE-ɛ4 non-carriers. Moreover, inheriting longer TL was associated with greater cortical thickness in age and AD-related brain signatures and lower levels of CSF p-tau among individuals at a high genetic predisposition to AD. Further observational analyses are warranted to better understand these associations.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/líquido cefalorraquídeo , Análisis de la Aleatorización Mendeliana , Endofenotipos , Biomarcadores/líquido cefalorraquídeo , Apolipoproteínas E/genética , Telómero , Proteínas tau/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...