Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 192(6): 340, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32383057

RESUMEN

Floristic quality assessments (FQA) using floristic quality indices (FQIs) are useful tools for assessing and comparing vegetation communities and related habitat condition. However, intensive vegetation surveys requiring significant time and technical expertise are necessary, which limits the use of FQIs in environmental monitoring programs. This study modified standard FQI methods to develop a rapid assessment method for characterizing and modeling change in wetland habitat condition in the northern Everglades. Method modifications include limiting vegetation surveys to a subset of taxa selected as indicators of impact and eliminating richness and/or abundance factors from the equation. These modifications reduce the amount of time required to complete surveys and minimizes misidentification of species, which can skew results. The habitat characterization and assessment tool (HCAT) developed here is a FQA that uses a modified FQI to detect and model changes in habitat condition based on vegetation communities, characterize levels of impact as high, moderate, or low, provide predictive capabilities for assessing natural resource management or water management operation alternatives, and uniquely links a FQI with readily accessible environmental data. For application in the northern Everglades, surface water phosphorus concentrations, specific conductivity, distance from canal, and days since dry (5-year average) explained 67% of the variability in the dataset with > 99.9% confidence. The HCAT approach can be used to monitor, assess, and evaluate habitats with the objective of informing management decisions (e.g., as a screening tool) to maximize conservation and restoration of protected areas and is transferable to other wetlands with additional modification.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Monitoreo del Ambiente , Fósforo , Humedales
2.
Ecology ; 101(5): e02988, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31958144

RESUMEN

Long-term ecological research can resolve effects of disturbance on ecosystem dynamics by capturing the scale of disturbance and interactions with environmental changes. To quantify how disturbances interact with long-term directional changes (sea-level rise, freshwater restoration), we studied 17 yr of monthly dissolved organic carbon (DOC), total nitrogen (TN), and phosphorus (TP) concentrations and bacterioplankton productivity across freshwater-to-marine estuary gradients exposed to multiple disturbance events (e.g., droughts, fire, hurricanes, and low-temperature anomalies) and long-term increases in water levels. By studying two neighboring drainages that differ in hydrologic connectivity, we additionally tested how disturbance legacies are shaped by hydrologic connectivity. We predicted that disturbance events would interact with long-term increases in water levels in freshwater and marine ecosystems to increase spatiotemporal similarity (i.e., synchrony) of organic matter, nutrients, and microbial activities. Wetlands along the larger, deeper, and tidally influenced Shark River Slough (SRS) drainage had higher and more variable DOC, TN, and TP concentrations than wetlands along the smaller, shallower, tidally restricted Taylor River Slough/Panhandle (TS/Ph) drainage. Along SRS, DOC concentrations declined with proximity to coast, and increased in magnitude and variability following drought and flooding in 2015 and a hurricane in 2017. Along TS/Ph, DOC concentrations varied by site (higher in marine than freshwater wetlands) but not year. In both drainages, increases in TN from upstream freshwater marshes occurred following fire in 2008 and droughts in 2010 and 2015, whereas downstream increases in TP occurred with coastal storm surge from hurricanes in 2005 and 2017. Decreases in DOC:TN and DOC:TP were explained by increased TN and TP. Increases in bacterioplankton productivity occurred throughout both drainages following low-temperature events (2010 and 2011) and a hurricane (2017). Long-term TN and TP concentrations and bacterioplankton productivity were correlated (r > 0.5) across a range of sampling distances (1-50 km), indicating spatiotemporal synchrony. DOC concentrations were not synchronized across space or time. Our study advances disturbance ecology theory by illustrating how disturbance events interact with long-term environmental changes and hydrologic connectivity to determine the magnitude and extent of disturbance legacies. Understanding disturbance legacies will enhance prediction and enable more effective management of rapidly changing ecosystems.


Asunto(s)
Ecosistema , Humedales , Agua Dulce , Nutrientes , Ríos
3.
Environ Manage ; 54(2): 223-39, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24844463

RESUMEN

Everglades restoration is dependent on constructed wetlands to treat agricultural phosphorus (P)-enriched runoff prior to delivery to the Everglades. Over the last 5 years, P concentrations delivered to the northern boundary of Everglades National Park (Park) have remained higher than the 8 µg L(-1)-target identified to be protective of flora and fauna. Historically, Everglades hydrology was driven by rainfall that would then sheetflow through the system. The system is now divided into a number of large impoundments. We use sodium-to-calcium ratios as a water source discriminator to assess the influence of management and environmental conditions to understand why P concentrations in Park inflows remain higher than that of the target. Runoff from Water Conservation Area 3A (Area 3A) and canal water from areas north of Area 3A are two major sources of water to the Park, and both have distinct Na:Ca ratios. The P concentrations of Park inflows have decreased since the 1980s, and from June 1994 through May 2000, concentrations were the lowest when Area 3A water depths were the deepest. Area 3A depths declined following this period and P concentrations subsequently increased. Further, some water sources for the Park are not treated and are impeding concentration reductions. Promoting sheetflow over channelized flow and treating untreated water sources can work in conjunction with constructed wetlands to further reduce nutrient loading to the sensitive Everglades ecosystem.


Asunto(s)
Agroquímicos/análisis , Conservación de los Recursos Naturales/métodos , Monitoreo del Ambiente/estadística & datos numéricos , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Humedales , Calcio/análisis , Florida , Sodio/análisis , Estadísticas no Paramétricas , Factores de Tiempo
4.
Environ Manage ; 49(3): 720-33, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22207477

RESUMEN

Recent appearance of cattail (Typha domingensis) within a southern Everglades slough-Upper Taylor Slough (Everglades National Park)-suggests ecosystem eutrophication. We analyze water quality, nutrient enrichment, and water management operations as potential drivers of eutrophication in Upper Taylor Slough. Further, we attempt to determine why surface water phosphorus, a parameter used commonly to monitor ecosystem health in the Everglades, did not serve as an early warning for eutrophication, which has broader implication for other restoration efforts. We found that surface water total phosphorus concentrations generally were below a 0.01 mg L(-1) threshold determined to cause imbalances in flora and fauna, suggesting no ecosystem eutrophication. However, assessment of nutrient loads and loading rates suggest Upper Taylor Slough has experienced eutrophication and that continued total phosphorus loading through a point-source discharge was a major driver. These nutrient loads, combined with increases in hydroperiods, led to the expansion of cattail in Upper Taylor Slough. We recommend other metrics, such as nutrient loads, periphyton and arthropod community shifts, and sediment core analyses, for assessing ecosystem health. Monitoring surface water alone is not enough to indicate ecosystem stress.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Typhaceae/fisiología , Eutrofización , Florida , Fósforo/análisis , Dinámica Poblacional , Estaciones del Año , Typhaceae/crecimiento & desarrollo , Movimientos del Agua , Calidad del Agua
5.
Environ Monit Assess ; 147(1-3): 445-62, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18224453

RESUMEN

Agricultural and urban runoff pumped into the perimeter canals of the Arthur R. Marshall Loxahatchee National Wildlife Refuge (Refuge), a 58,320-ha soft-water wetland, has elevated nutrients which impact the Refuge interior marsh. To best manage the Refuge, linkages between inflows to the perimeter canals and environmental conditions within the marsh need to be understood. Conductivity, which typically is high in the canals and lowest at the most interior sites, was used as a surrogate tracer to characterize patterns of constituent transport. The Refuge was initially classified into four zones based upon patterns and variability in conductivity data: Canal Zone; Perimeter Zone (canal to 2.5 km into the interior); Transition Zone (2.5 to 4.5 km from the canal); Interior Zone (>4.5 km from the canal). Conductivity variability declined from the Perimeter to the Interior Zone, with the highest variability in the marsh observed in the Perimeter Zone and the lowest variability observed in the Interior Zone. Analysis of other water quality parameters indicated that conditions in the Perimeter and Transition Zones were different, and more impacted, than in the Interior Zone. In general, there was a positive relationship between structure inflows and canal phosphorus concentrations, including discharges from treatment wetlands and bypasses of untreated water. This classification approach is applicable for stratified sampling designs, resolving spatial bias in water quality models, and in aiding in management decisions about resource allocation.


Asunto(s)
Movimientos del Agua , Contaminación del Agua/análisis , Abastecimiento de Agua/análisis , Humedales , Monitoreo del Ambiente/métodos , Florida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...