Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain ; 147(2): 680-697, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37831655

RESUMEN

Migraine is a common and disabling neurological disorder. The headache and sensory amplifications of migraine are attributed to hyperexcitable sensory circuits, but a detailed understanding remains elusive. A mutation in casein kinase 1 delta (CK1δ) was identified in non-hemiplegic familial migraine with aura and advanced sleep phase syndrome. Mice carrying the CK1δT44A mutation were more susceptible to spreading depolarization (the phenomenon that underlies migraine aura), but mechanisms underlying this migraine-relevant phenotype were not known. We used a combination of whole-cell electrophysiology and multiphoton imaging, in vivo and in brain slices, to compare CK1δT44A mice (adult males) to their wild-type littermates. We found that despite comparable synaptic activity at rest, CK1δT44A neurons were more excitable upon repetitive stimulation than wild-type, with a reduction in presynaptic adaptation at excitatory but not inhibitory synapses. The mechanism of this adaptation deficit was a calcium-dependent enhancement of the size of the readily releasable pool of synaptic vesicles, and a resultant increase in glutamate release, in CK1δT44A compared to wild-type synapses. Consistent with this mechanism, CK1δT44A neurons showed an increase in the cumulative amplitude of excitatory post-synaptic currents, and a higher excitation-to-inhibition ratio during sustained activity compared to wild-type. At a local circuit level, action potential bursts elicited in CK1δT44A neurons triggered an increase in recurrent excitation compared to wild-type, and at a network level, CK1δT44A mice showed a longer duration of 'up state' activity, which is dependent on recurrent excitation. Finally, we demonstrated that the spreading depolarization susceptibility of CK1δT44A mice could be returned to wild-type levels with the same intervention (reduced extracellular calcium) that normalized presynaptic adaptation. Taken together, these findings show a stimulus-dependent presynaptic gain of function at glutamatergic synapses in a genetic model of migraine, that accounts for the increased spreading depolarization susceptibility and may also explain the sensory amplifications that are associated with the disease.


Asunto(s)
Depresión de Propagación Cortical , Epilepsia , Trastornos Migrañosos , Migraña con Aura , Ratones , Animales , Migraña con Aura/genética , Ratones Transgénicos , Canales de Calcio Tipo N/genética , Calcio/metabolismo , Trastornos Migrañosos/genética , Mutación/genética , Depresión de Propagación Cortical/fisiología
2.
eNeuro ; 10(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37704367

RESUMEN

Neuronal cell body analysis is crucial for quantifying changes in neuronal sizes under different physiological and pathologic conditions. Neuronal cell body detection and segmentation mainly rely on manual or pseudo-manual annotations. Manual annotation of neuronal boundaries is time-consuming, requires human expertise, and has intra/interobserver variances. Also, determining where the neuron's cell body ends and where the axons and dendrites begin is taxing. We developed a deep-learning-based approach that uses a state-of-the-art shifted windows (Swin) transformer for automated, reproducible, fast, and unbiased 2D detection and segmentation of neuronal somas imaged in mouse acute brain slices by multiphoton microscopy. We tested our Swin algorithm during different experimental conditions of low and high signal fluorescence. Our algorithm achieved a mean Dice score of 0.91, a precision of 0.83, and a recall of 0.86. Compared with two different convolutional neural networks, the Swin transformer outperformed them in detecting the cell boundaries of GCamP6s expressing neurons. Thus, our Swin transform algorithm can assist in the fast and accurate segmentation of fluorescently labeled neuronal cell bodies in thick acute brain slices. Using our flexible algorithm, researchers can better study the fluctuations in neuronal soma size during physiological and pathologic conditions.


Asunto(s)
Cuerpo Celular , Aprendizaje Profundo , Humanos , Animales , Ratones , Neuronas , Axones , Algoritmos
3.
Pharmacol Res ; 178: 106144, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35304260

RESUMEN

The glutamate delta family of receptors is composed of GluD1 and GluD2 and serve as synaptic organizers. We have previously demonstrated several autism-like molecular and behavioral phenotypes including an increase in dendritic spines in GluD1 knockout mice. Based on previous reports we evaluated whether disruption of autophagy mechanisms may account for these phenotypes. Mouse model with conditional deletion of GluD1 from excitatory neurons in the corticolimbic regions was utilized. GluD1 loss led to overactive Akt-mTOR pathway, higher p62 and a lower LC3-II/LC3-I ratio in the somatosensory cortex suggesting reduced autophagy. Excitatory elements were increased in number but had immature phenotype based on puncta size, lower AMPA subunit GluA1 expression and impaired development switch from predominantly GluN2B to mixed GluN2A/GluN2B subunit expression. Overactive Akt-mTOR signaling and impaired autophagy was also observed in dorsal striatum upon conditional ablation of GluD1 and in the prefrontal cortex and hippocampus in constitutive knockout. Finally, cognitive deficits in novel object recognition test and fear conditioning were observed in mice with conditional ablation of GluD1 from the corticolimbic regions. Together, these results demonstrate a novel function of GluD1 in the regulation of autophagy pathway which may underlie autism phenotypes and is relevant to the genetic association of GluD1 coding, GRID1 gene with autism and other developmental disorders.


Asunto(s)
Ácido Glutámico , Receptores de Glutamato , Corteza Somatosensorial , Animales , Autofagia , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Corteza Somatosensorial/metabolismo , Sinapsis/fisiología , Serina-Treonina Quinasas TOR/metabolismo
4.
J Neurosci ; 42(11): 2371-2383, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-34857650

RESUMEN

Spreading depolarizations (SDs) of gray matter occur in the brain in different pathologic conditions, and cause varying degrees of tissue damage depending on the extent of metabolic burden on the tissue. As might be expected for such large depolarizations, neurons exhibit bursts of action potentials (APs) as the wave propagates. However, the specific role of APs in SD propagation is unclear. This is potentially consequential, since sodium channel modulation has not been considered as a therapeutic target for SD-associated disorders, because of ambiguous experimental evidence. Using whole-cell electrophysiology and single-photon imaging in acute cortical slices from male C57Bl6 mice, we tested the effects of AP blockade on SDs generated by two widely used induction paradigms. We found that AP blockade using tetrodotoxin (TTX) restricted propagation of focally induced SDs, and significantly reduced the amplitude of neuronal depolarization, as well as its Ca2+ load. TTX also abolished the suppression of spontaneous synaptic activity that is a hallmark of focally induced SD. In contrast, TTX did not affect the propagation of SD induced by global superfusion of high [K+]e containing artificial CSF (ACSF). Thus, we show that voltage-gated sodium channel (Nav)-mediated neuronal AP bursts are critical for the propagation and downstream effects of focally induced SD but are less important when the ionic balance of the extracellular space is already compromised. In doing so we corroborate the notion that two different SD induction paradigms, each relevant to different clinical situations, vary significantly in their characteristics and potentially their response to treatment.SIGNIFICANCE STATEMENT Our findings suggest that voltage-gated sodium channel (Nav) channels have a critical role in the propagation and downstream neural effects of focally induced spreading depolarization (SD). As SDs are likely induced focally in many disease conditions, these studies support sodium channel modulation, a previously underappreciated therapeutic option in SD-associated disorders, as a viable approach.


Asunto(s)
Canales de Sodio Activados por Voltaje , Potenciales de Acción/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Tetrodotoxina/farmacología , Canales de Sodio Activados por Voltaje/metabolismo
5.
Neuron ; 109(4): 611-628.e8, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33321071

RESUMEN

Migraine with aura is a common but poorly understood sensory circuit disorder. Monogenic models allow an opportunity to investigate its mechanisms, including spreading depolarization (SD), the phenomenon underlying migraine aura. Using fluorescent glutamate imaging, we show that awake mice carrying a familial hemiplegic migraine type 2 (FHM2) mutation have slower clearance during sensory processing, as well as previously undescribed spontaneous "plumes" of glutamate. Glutamatergic plumes overlapped anatomically with a reduced density of GLT-1a-positive astrocyte processes and were mimicked in wild-type animals by inhibiting glutamate clearance. Plume pharmacology and plume-like neural Ca2+ events were consistent with action-potential-independent spontaneous glutamate release, suggesting plumes are a consequence of inefficient clearance following synaptic release. Importantly, a rise in basal glutamate and plume frequency predicted the onset of SD in both FHM2 and wild-type mice, providing a novel mechanism in migraine with aura and, by extension, the other neurological disorders where SD occurs.


Asunto(s)
Encéfalo/metabolismo , Ácido Glutámico/metabolismo , Migraña con Aura/genética , Migraña con Aura/metabolismo , Modelos Genéticos , Transducción de Señal/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos
6.
Mol Pharmacol ; 90(2): 96-105, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27231330

RESUMEN

The delta family of ionotropic glutamate receptors consists of glutamate delta-1 (GluD1) and glutamate delta-2 receptors. We have previously shown that GluD1 knockout mice exhibit features of developmental delay, including impaired spine pruning and switch in the N-methyl-D-aspartate receptor subunit, which are relevant to autism and other neurodevelopmental disorders. Here, we identified a novel role of GluD1 in regulating metabotropic glutamate receptor 5 (mGlu5) signaling in the hippocampus. Immunohistochemical analysis demonstrated colocalization of mGlu5 with GluD1 punctas in the hippocampus. Additionally, GluD1 protein coimmunoprecipitated with mGlu5 in the hippocampal membrane fraction, as well as when overexpressed in human embryonic kidney 293 cells, demonstrating that GluD1 and mGlu5 may cooperate in a signaling complex. The interaction of mGlu5 with scaffold protein effector Homer, which regulates mechanistic target of rapamycin (mTOR) signaling, was abnormal both under basal conditions and in response to mGlu1/5 agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) in GluD1 knockout mice. The basal levels of phosphorylated mTOR and protein kinase B, the signaling proteins downstream of mGlu5 activation, were higher in GluD1 knockout mice, and no further increase was induced by DHPG. We also observed higher basal protein translation and an absence of DHPG-induced increase in GluD1 knockout mice. In accordance with a role of mGlu5-mediated mTOR signaling in synaptic plasticity, DHPG-induced internalization of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunits was impaired in the GluD1 knockout mice. These results demonstrate that GluD1 interacts with mGlu5, and loss of GluD1 impairs normal mGlu5 signaling potentially by dysregulating coupling to its effector. These studies identify a novel role of the enigmatic GluD1 subunit in hippocampal function.


Asunto(s)
Hipocampo/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Receptores de Glutamato/metabolismo , Animales , Eliminación de Gen , Inmunoprecipitación , Ratones Noqueados , Modelos Biológicos , Fosforilación , Unión Proteica , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
7.
PLoS One ; 8(4): e60785, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23560106

RESUMEN

Glutamate delta-1 (GluD1) receptors are expressed throughout the forebrain during development with high levels in the hippocampus during adulthood. We have recently shown that deletion of GluD1 receptor results in aberrant emotional and social behaviors such as hyperaggression and depression-like behaviors and social interaction deficits. Additionally, abnormal expression of synaptic proteins was observed in amygdala and prefrontal cortex of GluD1 knockout mice (GluD1 KO). However the role of GluD1 in learning and memory paradigms remains unknown. In the present study we evaluated GluD1 KO in learning and memory tests. In the eight-arm radial maze GluD1 KO mice committed fewer working memory errors compared to wildtype mice but had normal reference memory. Enhanced working memory in GluD1 KO was also evident by greater percent alternation in the spontaneous Y-maze test. No difference was observed in object recognition memory in the GluD1 KO mice. In the Morris water maze test GluD1 KO mice showed no difference in acquisition but had longer latency to find the platform in the reversal learning task. GluD1 KO mice showed a deficit in contextual and cue fear conditioning but had normal latent inhibition. The deficit in contextual fear conditioning was reversed by D-Cycloserine (DCS) treatment. GluD1 KO mice were also found to be more sensitive to foot-shock compared to wildtype. We further studied molecular changes in the hippocampus, where we found lower levels of GluA1, GluA2 and GluK2 subunits while a contrasting higher level of GluN2B in GluD1 KO. Additionally, we found higher postsynaptic density protein 95 (PSD95) and lower glutamate decarboxylase 67 (GAD67) expression in GluD1 KO. We propose that GluD1 is crucial for normal functioning of synapses and absence of GluD1 leads to specific abnormalities in learning and memory. These findings provide novel insights into the role of GluD1 receptors in the central nervous system.


Asunto(s)
Depresión/genética , Miedo/psicología , Aprendizaje por Laberinto/fisiología , Memoria a Corto Plazo/fisiología , Receptores de Glutamato/genética , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiopatología , Animales , Conducta Animal/efectos de los fármacos , Condicionamiento Psicológico/efectos de los fármacos , Señales (Psicología) , Cicloserina/farmacología , Depresión/fisiopatología , Depresión/psicología , Homólogo 4 de la Proteína Discs Large , Emociones/efectos de los fármacos , Miedo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Glutamato Deshidrogenasa , Guanilato-Quinasas/genética , Guanilato-Quinasas/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatología , Aprendizaje por Laberinto/efectos de los fármacos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Memoria a Corto Plazo/efectos de los fármacos , Ratones , Ratones Noqueados , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiopatología , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Receptores de Glutamato/deficiencia
8.
Mol Pharmacol ; 83(1): 9-21, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23007555

RESUMEN

Ifenprodil is an allosteric inhibitor of GluN1/GluN2B N-methyl-D-aspartate receptors. Despite its widespread use as a prototype for drug development and a subtype-selective tool for physiologic experiments, its precise effect on GluN1/GluN2B gating is yet to be fully understood. Interestingly, recent crystallographic evidence identified that ifenprodil, unlike zinc, binds at the interface of the GluN1/GluN2B amino terminal domain dimer by an induced-fit mechanism. To delineate the effect of this unique binding on GluN1/GluN2B receptor gating, we recorded steady-state currents from cell-attached and outside-out patches. At pH 7.9 in cell-attached patches, ifenprodil increased the occupancy of the long-lived shut conformations, thereby reducing the open probability of the receptor with no change in the mean open time. In addition, ifenprodil selectively affected the area of shut time constants, but not the time constants themselves. Kinetic analyses suggested that ifenprodil prevents the transition of the receptor to an open state and increases its dwell time in an intrinsically occurring closed conformation or desensitized state. We found distinct differences in the action of ifenprodil at GluN1/GluN2B in comparison with previous studies on the effect of zinc on GluN1/GluN2A gating, which may arise due to their unique binding sites. Our data also uncover the potential pH-dependent action of ifenprodil on gating. At a low pH (pH 7.4), but not pH 7.9, ifenprodil reduces the mean open time of GluN1/GluN2B receptors, which may be responsible for its usefulness as a context-dependent inhibitor in conditions like ischemia and stroke, when the pH of the extracellular milieu becomes acidic.


Asunto(s)
Piperidinas/farmacología , Receptores de N-Metil-D-Aspartato/fisiología , Regulación Alostérica , Animales , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Activación del Canal Iónico , Técnicas de Placa-Clamp , Ratas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Proteínas Recombinantes/antagonistas & inhibidores , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...