Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Technol Adv Mater ; 23(1): 866-894, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36506822

RESUMEN

At present, CO2 photoreduction to value-added chemicals/fuels and photocatalytic hydrogen generation by water splitting are the most promising reactions to fix two main issues simultaneously, rising CO2 levels and never-lasting energy demand. CO2, a major contributor to greenhouse gases (GHGs) with about 65% of the total emission, is known to cause adverse effects like global temperature change, ocean acidification, greenhouse effects, etc. The idea of CO2 capture and its conversion to hydrocarbons can control the further rise of CO2 levels and help in producing alternative fuels that have several further applications. On the other hand, hydrogen being a zero-emission fuel is considered as a clean and sustainable form of energy that holds great promise for various industrial applications. The current review focuses on the discussion of the recent progress made in designing efficient photocatalytic materials for CO2 photoreduction and hydrogen evolution reaction (HER). The scope of the current study is limited to the TiO2 and non-TiO2 based advanced nanomaterials (i.e. metal chalcogenides, MOFs, carbon nitrides, single-atom catalysts, and low-dimensional nanomaterials). In detail, the influence of important factors that affect the performance of these photocatalysts towards CO2 photoreduction and HER is reviewed. Special attention is also given in this review to provide a brief account of CO2 adsorption modes on the catalyst surface and its subsequent reduction pathways/product selectivity. Finally, the review is concluded with additional outlooks regarding upcoming research on promising nanomaterials and reactor design strategies for increasing the efficiency of the photoreactions.

2.
Phys Chem Chem Phys ; 16(43): 23554-7, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25273361

RESUMEN

Novel mesoporous BN and BCN materials with cage type porous structure and spherical morphology have been synthesized using carbon nanocages with 3D porous structure as a template via an elemental substitution method at a low synthesis temperature. The obtained materials exhibit a large specific pore volume with uniform pore size distribution and the specific surface area ranging from 945 to 1023 m(2) g(-1).

3.
Chem Commun (Camb) ; 47(38): 10758-60, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-21874175

RESUMEN

The organic-organic self-assembly method with Resorcinol (R)/Formaldehyde (F) and Pluronic F127 has been employed to synthesize mesoporous carbon (MC). The pore diameter of the MC has been tuned from 7 to 12.5 nm by changing the molar ratio of carbon sources to surfactant and polymerization time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...