Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36296652

RESUMEN

To date, there are no antimicrobial agents available in the market that have absolute control over the growing threat of bacterial strains. The increase in the production capacity of antibiotics and the growing antibacterial resistance of bacteria have majorly affected a variety of businesses and public health. Bimetallic nanoparticles (NPs) with two separate metals have been found to have stronger antibacterial potential than their monometallic versions. This enhanced antibacterial efficiency of bimetallic nanoparticles is due to the synergistic effect of their participating monometallic counterparts. To distinguish between bacteria and mammals, the existence of diverse metal transport systems and metalloproteins is necessary for the use of bimetallic Au-Ag NPs, just like any other metal NPs. Due to their very low toxicity toward human cells, these bimetallic NPs, particularly gold-silver NPs, might prove to be an effective weapon in the arsenal to beat emerging drug-resistant bacteria. The cellular mechanism of bimetallic nanoparticles for antibacterial activity consists of cell membrane degradation, disturbance in homeostasis, oxidative stress, and the production of reactive oxygen species. The synthesis of bimetallic nanoparticles can be performed by a bottom-up and top-down strategy. The bottom-up technique generally includes sol-gel, chemical vapor deposition, green synthesis, and co-precipitation methods, whereas the top-down technique includes the laser ablation method. This review highlights the key prospects of the cellular mechanism, synthesis process, and antibacterial capabilities against a wide range of bacteria. Additionally, we also discussed the role of Au-Ag NPs in the treatment of multidrug-resistant bacterial infection and wound healing.


Asunto(s)
Nanopartículas del Metal , Metaloproteínas , Animales , Humanos , Plata/farmacología , Nanopartículas del Metal/uso terapéutico , Antibacterianos/farmacología , Especies Reactivas de Oxígeno/farmacología , Farmacorresistencia Bacteriana , Oro/farmacología , Bacterias , Nanotecnología , Mamíferos
2.
Int J Biol Macromol ; 221: 874-890, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36089091

RESUMEN

Cabazitaxel (CZT) loaded chitosan-alginate based (CSA) nanoparticles were developed with dual targeting functions of both folate receptor and epidermal growth factor receptor (EGFR) using ionic gelation technique. The chitosan-folate conjugate was synthesized, and characterized by using FTIR, NMR and Mass spectroscopy. The physicochemical parameters and morphology of all CSA nanoparticles were examined. The degree of conjugation of folic acid and cetuximab (CTXmab) was determined by UV-Visible spectroscopy and Bradford assay, respectively. Moreover, XPS analysis also supported the presence of the ligands on nanoparticles. The cellular-uptake study performed on A-549 cells demonstrated a significant enhancement in the uptake of dual-receptor targeted CSA nanoparticles than non-targeted and single-receptor targeted CSA nanoparticles. Further, CZT-loaded dual receptors targeted CSA nanoparticles also showed significantly lower IC50 values (~38 folds) than the CZT control against A-549 cells. Further, in-vivo histopathological evaluations of dual receptor-targeted CSA nanoparticles have demonstrated better safety in Wistar rats. Moreover, its treatment on the Benzo(a)pyrene (B(a)P) induced lung cancer mice model has showed the enhanced anticancer efficacy of CZT with a prolonged survival rate.


Asunto(s)
Quitosano , Neoplasias Pulmonares , Nanopartículas , Ratas , Ratones , Animales , Quitosano/química , Alginatos , Línea Celular Tumoral , Ratas Wistar , Nanopartículas/química , Neoplasias Pulmonares/tratamiento farmacológico , Ácido Fólico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...