Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 53(6): 706-723.e5, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32504558

RESUMEN

The Bloom's helicase ortholog, Sgs1, orchestrates the formation and disengagement of recombination intermediates to enable controlled crossing-over during meiotic and mitotic DNA repair. Whether its enzymatic activity is temporally regulated to implement formation of noncrossovers prior to the activation of crossover-nucleases is unknown. Here, we show that, akin to the Mus81-Mms4, Yen1, and MutLγ-Exo1 nucleases, Sgs1 helicase function is under cell-cycle control through the actions of CDK and Cdc5 kinases. Notably, however, whereas CDK and Cdc5 unleash nuclease function during M phase, they act in concert to stimulate Sgs1 activity during S phase/prophase I. Mechanistically, CDK-mediated phosphorylation enhances the velocity and processivity of Sgs1, which stimulates DNA unwinding in vitro and joint molecule processing in vivo. Subsequent hyper-phosphorylation by Cdc5 appears to reduce the activity of Sgs1, while activating Mus81-Mms4 and MutLγ-Exo1. These findings suggest a concerted mechanism driving orderly formation of noncrossover and crossover recombinants in meiotic and mitotic cells.


Asunto(s)
Meiosis , Mitosis , Procesamiento Proteico-Postraduccional , RecQ Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN de Hongos/genética , Recombinación Homóloga , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , RecQ Helicasas/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
2.
Mol Cell ; 75(4): 859-874.e4, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31351878

RESUMEN

Homologous recombination (HR) is essential for high-fidelity DNA repair during mitotic proliferation and meiosis. Yet, context-specific modifications must tailor the recombination machinery to avoid (mitosis) or enforce (meiosis) the formation of reciprocal exchanges-crossovers-between recombining chromosomes. To obtain molecular insight into how crossover control is achieved, we affinity purified 7 DNA-processing enzymes that channel HR intermediates into crossovers or noncrossovers from vegetative cells or cells undergoing meiosis. Using mass spectrometry, we provide a global characterization of their composition and reveal mitosis- and meiosis-specific modules in the interaction networks. Functional analyses of meiosis-specific interactors of MutLγ-Exo1 identified Rtk1, Caf120, and Chd1 as regulators of crossing-over. Chd1, which transiently associates with Exo1 at the prophase-to-metaphase I transition, enables the formation of MutLγ-dependent crossovers through its conserved ability to bind and displace nucleosomes. Thus, rewiring of the HR network, coupled to chromatin remodeling, promotes context-specific control of the recombination outcome.


Asunto(s)
Intercambio Genético/fisiología , Meiosis/fisiología , Mitosis/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Espectrometría de Masas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Methods Cell Biol ; 144: 371-388, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29804678

RESUMEN

The formation of stable interactions between chromosomes of maternal and paternal origin-homologs-is required for their segregation during meiosis. To achieve this, cells take advantage of the recombination machinery, which promotes formation of reciprocal interhomolog exchanges, called crossovers, from the repair of self-inflicted DNA breaks. Important genetic studies led to the identification of key enzymes that control meiotic recombination. However, characterization of their biochemical properties when purified from meiotic cultures has been difficult to achieve. Here, we describe a simple approach to purify and characterize DNA repair enzymes from meiotic yeast cells. First, we provide a protocol to generate large-scale synchronous cultures. Second, we describe a general method to prepare meiotic extracts from which protein complexes can be immunoaffinity-purified. Finally, we detail how the purified material can be used for: (i) mass spectrometry-based analysis of interaction partners and posttranslational modifications, and (ii) monitoring enzymatic activities using synthetic DNA substrates.


Asunto(s)
ADN Helicasas/metabolismo , Endonucleasas/metabolismo , Meiosis , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Intercambio Genético , Metafase , Profase , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Soluciones , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA