Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
J Diabetes Investig ; 15(6): 649-655, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38436511

RESUMEN

The ß-cell relies predominantly on glucose utilization to generate adenosine triphosphate, which is crucial for both cell viability and insulin secretion. The ß-cell has evolved remarkable metabolic flexibility to productively respond to shifts in environmental conditions and changes in glucose availability. Although these adaptive responses are important for maintaining optimal cellular function, there is emerging evidence that the resulting changes in cellular metabolites can impact the epigenome, causing transient and lasting alterations in gene expression. This review explores the intricate interplay between metabolism and the epigenome, providing valuable insights into the molecular mechanisms leading to ß-cell dysfunction in diabetes. Understanding these mechanisms will be critical for developing targeted therapeutic strategies to preserve and enhance ß-cell function, offering potential avenues for interventions to improve glycemic control in individuals with diabetes.


Asunto(s)
Glucosa , Células Secretoras de Insulina , Humanos , Células Secretoras de Insulina/metabolismo , Glucosa/metabolismo , Animales , Epigenómica , Epigénesis Genética , Epigenoma , Diabetes Mellitus/metabolismo , Diabetes Mellitus/genética
2.
Cell Commun Signal ; 22(1): 141, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383396

RESUMEN

BACKGROUND: Lipids are regulators of insulitis and ß-cell death in type 1 diabetes development, but the underlying mechanisms are poorly understood. Here, we investigated how the islet lipid composition and downstream signaling regulate ß-cell death. METHODS: We performed lipidomics using three models of insulitis: human islets and EndoC-ßH1 ß cells treated with the pro-inflammatory cytokines interlukine-1ß and interferon-γ, and islets from pre-diabetic non-obese mice. We also performed mass spectrometry and fluorescence imaging to determine the localization of lipids and enzyme in islets. RNAi, apoptotic assay, and qPCR were performed to determine the role of a specific factor in lipid-mediated cytokine signaling. RESULTS: Across all three models, lipidomic analyses showed a consistent increase of lysophosphatidylcholine species and phosphatidylcholines with polyunsaturated fatty acids and a reduction of triacylglycerol species. Imaging assays showed that phosphatidylcholines with polyunsaturated fatty acids and their hydrolyzing enzyme phospholipase PLA2G6 are enriched in islets. In downstream signaling, omega-3 fatty acids reduce cytokine-induced ß-cell death by improving the expression of ADP-ribosylhydrolase ARH3. The mechanism involves omega-3 fatty acid-mediated reduction of the histone methylation polycomb complex PRC2 component Suz12, upregulating the expression of Arh3, which in turn decreases cell apoptosis. CONCLUSIONS: Our data provide insights into the change of lipidomics landscape in ß cells during insulitis and identify a protective mechanism by omega-3 fatty acids. Video Abstract.


Asunto(s)
Ácidos Grasos Omega-3 , Islotes Pancreáticos , N-Glicosil Hidrolasas , Ratones , Animales , Humanos , Islotes Pancreáticos/metabolismo , Muerte Celular , Citocinas/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Insaturados , Fosfatidilcolinas/metabolismo
3.
bioRxiv ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38352306

RESUMEN

Type 1 diabetes (T1D) results from the autoimmune destruction of the insulin producing ß cells of the pancreas. Omega-3 fatty acids protect ß cells and reduce the incident of T1D. However, how omega-3 fatty acids act on ß cells is not well understood. We have shown that omega-3 fatty acids reduce pro-inflammatory cytokine-mediated ß-cell apoptosis by upregulating the expression of the ADP-ribosylhydrolase ARH3. Here, we further investigate the ß-cell protection mechanism by ARH3 by performing siRNA of its gene Adprhl2 in MIN6 insulin-producing cells followed by treatment with a cocktail of the pro-inflammatory cytokines IL-1ß + IFN-γ + TNF-α, and proteomics analysis. ARH3 regulated proteins from several pathways related to the nucleus (splicing, RNA surveillance and nucleocytoplasmic transport), mitochondria (metabolic pathways) and endoplasmic reticulum (protein folding). ARH3 also regulated the levels of cytokine-signaling proteins related to the antigen processing and presentation, and chemokine-signaling pathway. We further studied the role of ARH in regulating the chemokine CXCL9. We confirmed that ARH3 reduces the cytokine-induced expression of CXCL9 by ELISA. We also found that CXCL9 expression is regulated by omega-3 fatty acids. In conclusion, we showed that omega-3 fatty acids regulate CXCL9 expression via ARH3, which might have a role in protecting ß cells from immune attack and preventing T1D development.

4.
Diabetes ; 73(3): 434-447, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38015772

RESUMEN

Protein tyrosine phosphatase N2 (PTPN2) is a type 1 diabetes (T1D) candidate gene identified from human genome-wide association studies. PTPN2 is highly expressed in human and murine islets and becomes elevated upon inflammation and models of T1D, suggesting that PTPN2 may be important for ß-cell survival in the context of T1D. To test whether PTPN2 contributed to ß-cell dysfunction in an inflammatory environment, we generated a ß-cell-specific deletion of Ptpn2 in mice (PTPN2-ß knockout [ßKO]). Whereas unstressed animals exhibited normal metabolic profiles, low- and high-dose streptozotocin-treated PTPN2-ßKO mice displayed hyperglycemia and accelerated death, respectively. Furthermore, cytokine-treated Ptpn2-KO islets resulted in impaired glucose-stimulated insulin secretion, mitochondrial defects, and reduced glucose-induced metabolic flux, suggesting ß-cells lacking Ptpn2 are more susceptible to inflammatory stress associated with T1D due to maladaptive metabolic fitness. Consistent with the phenotype, proteomic analysis identified an important metabolic enzyme, ATP-citrate lyase, as a novel PTPN2 substrate.


Asunto(s)
Diabetes Mellitus Tipo 1 , Ratones , Humanos , Animales , Diabetes Mellitus Tipo 1/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Monoéster Fosfórico Hidrolasas , Estudio de Asociación del Genoma Completo , Proteómica , Glucosa , Ratones Noqueados
5.
Nat Commun ; 14(1): 7732, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007492

RESUMEN

Insulin secretion is a tightly regulated process that is vital for maintaining blood glucose homeostasis. Although the molecular components of insulin granule trafficking and secretion are well established, how they are regulated to rapidly fine-tune secretion in response to changing environmental conditions is not well characterized. Recent studies have determined that dysregulation of RNA-binding proteins (RBPs) and aberrant mRNA splicing occurs at the onset of diabetes. We demonstrate that the RBP, RBFOX2, is a critical regulator of insulin secretion through the alternative splicing of genes required for insulin granule docking and exocytosis. Conditional mutation of Rbfox2 in the mouse pancreas results in decreased insulin secretion and impaired blood glucose homeostasis. Consistent with defects in secretion, we observe reduced insulin granule docking and corresponding splicing defects in the SNARE complex components. These findings identify an additional mechanism for modulating insulin secretion in both healthy and dysfunctional pancreatic ß cells.


Asunto(s)
Empalme Alternativo , Células Secretoras de Insulina , Ratones , Animales , Secreción de Insulina , Glucemia/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Exocitosis/fisiología , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo
6.
Genes Dev ; 37(11-12): 490-504, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37364986

RESUMEN

The consolidation of unambiguous cell fate commitment relies on the ability of transcription factors (TFs) to exert tissue-specific regulation of complex genetic networks. However, the mechanisms by which TFs establish such precise control over gene expression have remained elusive-especially in instances in which a single TF operates in two or more discrete cellular systems. In this study, we demonstrate that ß cell-specific functions of NKX2.2 are driven by the highly conserved NK2-specific domain (SD). Mutation of the endogenous NKX2.2 SD prevents the developmental progression of ß cell precursors into mature, insulin-expressing ß cells, resulting in overt neonatal diabetes. Within the adult ß cell, the SD stimulates ß cell performance through the activation and repression of a subset of NKX2.2-regulated transcripts critical for ß cell function. These irregularities in ß cell gene expression may be mediated via SD-contingent interactions with components of chromatin remodelers and the nuclear pore complex. However, in stark contrast to these pancreatic phenotypes, the SD is entirely dispensable for the development of NKX2.2-dependent cell types within the CNS. Together, these results reveal a previously undetermined mechanism through which NKX2.2 directs disparate transcriptional programs in the pancreas versus neuroepithelium.


Asunto(s)
Proteínas de Homeodominio , Células Secretoras de Insulina , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteína Homeobox Nkx-2.2 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Diferenciación Celular , Proteínas de Pez Cebra/genética
7.
J Endocrinol ; 258(2)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37171828

RESUMEN

Historic and emerging studies provide evidence for the deterioration of pancreatic α cell function and identity in diabetes mellitus. Increased access to human tissue and the availability of more sophisticated molecular technologies have identified key insights into how α cell function and identity are preserved in healthy conditions and how they become dysfunctional in response to stress. These studies have revealed evidence of impaired glucagon secretion, shifts in α cell electrophysiology, changes in α cell mass, dysregulation of α cell transcription, and α-to-ß cell conversion prior to and during diabetes. In this review, we outline the current state of research on α cell identity in health and disease. Evidence in model organisms and humans suggests that in addition to ß cell dysfunction, diabetes is associated with a fundamental dysregulation of α cell identity. Importantly, epigenetic studies have revealed that α cells retain more poised and open chromatin at key cell-specific and diabetes-dysregulated genes, supporting the model that the inherent epigenetic plasticity of α cells makes them susceptible to the transcriptional changes that potentiate the loss of identity and function seen in diabetes. Thus, additional research into the maintenance of α cell identity and function is critical to fully understanding diabetes. Furthermore, these studies suggest α cells could represent an alternative source of new ß cells for diabetes treatment.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Glucagón , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 2/genética , Células Secretoras de Insulina/fisiología , Diferenciación Celular
8.
Diabetes ; 72(6): 677-689, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37125945

RESUMEN

Cystic fibrosis (CF) is a recessive disorder arising from mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein. CFTR is expressed in numerous tissues, with high expression in the airways, small and large intestine, pancreatic and hepatobiliary ducts, and male reproductive tract. CFTR loss in these tissues disrupts regulation of salt, bicarbonate, and water balance across their epithelia, resulting in a systemic disorder with progressive organ dysfunction and damage. Pancreatic exocrine damage ultimately manifests as pancreatic exocrine insufficiency that begins as early as infancy. Pancreatic remodeling accompanies this early damage, during which abnormal glucose tolerance can be observed in toddlers. With increasing age, however, insulin secretion defects progress such that CF-related diabetes (CFRD) occurs in 20% of teens and up to half of adults with CF. The relevance of CFRD is highlighted by its association with increased morbidity, mortality, and patient burden. While clinical research on CFRD has greatly assisted in the care of individuals with CFRD, key knowledge gaps on CFRD pathogenesis remain. Furthermore, the wide use of CFTR modulators to restore CFTR activity is changing the CFRD clinical landscape and the field's understanding of CFRD pathogenesis. For these reasons, the National Institute of Diabetes and Digestive and Kidney Diseases and the Cystic Fibrosis Foundation sponsored a CFRD Scientific Workshop, 23-25 June 2021, to define knowledge gaps and needed research areas. This article describes the findings from this workshop and plots a path for CFRD research that is needed over the next decade.


Asunto(s)
Fibrosis Quística , Diabetes Mellitus , Intolerancia a la Glucosa , Adulto , Adolescente , Masculino , Humanos , Fibrosis Quística/complicaciones , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Diabetes Mellitus/etiología , Diabetes Mellitus/genética , Investigación
9.
Diabetes Care ; 46(6): 1112-1123, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37125948

RESUMEN

Cystic fibrosis (CF) is a recessive disorder arising from mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein. CFTR is expressed in numerous tissues, with high expression in the airways, small and large intestine, pancreatic and hepatobiliary ducts, and male reproductive tract. CFTR loss in these tissues disrupts regulation of salt, bicarbonate, and water balance across their epithelia, resulting in a systemic disorder with progressive organ dysfunction and damage. Pancreatic exocrine damage ultimately manifests as pancreatic exocrine insufficiency that begins as early as infancy. Pancreatic remodeling accompanies this early damage, during which abnormal glucose tolerance can be observed in toddlers. With increasing age, however, insulin secretion defects progress such that CF-related diabetes (CFRD) occurs in 20% of teens and up to half of adults with CF. The relevance of CFRD is highlighted by its association with increased morbidity, mortality, and patient burden. While clinical research on CFRD has greatly assisted in the care of individuals with CFRD, key knowledge gaps on CFRD pathogenesis remain. Furthermore, the wide use of CFTR modulators to restore CFTR activity is changing the CFRD clinical landscape and the field's understanding of CFRD pathogenesis. For these reasons, the National Institute of Diabetes and Digestive and Kidney Diseases and the Cystic Fibrosis Foundation sponsored a CFRD Scientific Workshop, 23-25 June 2021, to define knowledge gaps and needed research areas. This article describes the findings from this workshop and plots a path for CFRD research that is needed over the next decade.


Asunto(s)
Fibrosis Quística , Diabetes Mellitus , Intolerancia a la Glucosa , Adulto , Adolescente , Masculino , Humanos , Fibrosis Quística/complicaciones , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Diabetes Mellitus/diagnóstico , Intolerancia a la Glucosa/complicaciones , Investigación
10.
Front Endocrinol (Lausanne) ; 13: 1042611, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36339450

RESUMEN

Diabetes is an epidemic with increasing incidence across the world. Most individuals who are afflicted by this disease have type 2 diabetes, but there are many who suffer from type 1, an autoimmune disorder. Both types of diabetes have complex genetic underpinnings that are further complicated by epigenetic and environmental factors. A less prevalent and often under diagnosed subset of diabetes cases are characterized by single genetic mutations and include Maturity Onset Diabetes of the Young (MODY) and Neonatal Diabetes Mellitus (NDM). While the mode of action and courses of treatment for all forms of diabetes are distinct, the diseases all eventually result in the dysfunction and/or death of the pancreatic ß cell - the body's source of insulin. With loss of ß cell function, blood glucose homeostasis is disrupted, and life-threatening complications arise. In this review, we focus on how model systems provide substantial insights into understanding ß cell biology to inform our understanding of all forms of diabetes. The strengths and weaknesses of animal, hPSC derived ß-like cell, and organoid models are considered along with discussion of GATA6, a critical transcription factor frequently implicated in pancreatic dysfunction with developmental origins; experimental studies of GATA6 have highlighted the advantages and disadvantages of how each of these model systems can be used to inform our understanding of ß cell specification and function in health and disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Ratones , Animales , Diabetes Mellitus Tipo 2/complicaciones , Organoides , Páncreas , Células Madre
11.
Mol Metab ; 66: 101632, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36347424

RESUMEN

OBJECTIVE: Zinc transporter 8 (ZnT8) is a major humoral target in human type 1 diabetes (T1D). Polymorphic variants of Slc30A8, which encodes ZnT8, are also associated with protection from type 2 diabetes (T2D). The current study examined whether ZnT8 might play a role beyond simply being a target of autoimmunity in the pathophysiology of T1D. METHODS: The phenotypes of NOD mice with complete or partial global loss of ZnT8 were determined using a combination of disease incidence, histological, transcriptomic, and metabolic analyses. RESULTS: Unexpectedly, while complete loss of ZnT8 accelerated spontaneous T1D, heterozygosity was partially protective. In vivo and in vitro studies of ZnT8 deficient NOD.SCID mice suggested that the accelerated disease was due to more rampant autoimmunity. Conversely, beta cells in heterozygous animals uniquely displayed increased mitochondrial fitness under mild proinflammatory conditions. CONCLUSIONS: In pancreatic beta cells and immune cell populations, Zn2+ plays a key role as a regulator of redox signaling and as an independent secondary messenger. Importantly, Zn2+ also plays a major role in maintaining mitochondrial homeostasis. Our results suggest that regulating mitochondrial fitness by altering intra-islet zinc homeostasis may provide a novel mechanism to modulate T1D pathophysiology.


Asunto(s)
Proteínas de Transporte de Catión , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , Ratones , Animales , Transportador 8 de Zinc/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Haploinsuficiencia/genética , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Ratones Endogámicos NOD , Ratones SCID , Respiración
12.
Cell Metab ; 34(2): 193-196, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35108510

RESUMEN

Islet transplantation has proven to be an effective treatment for type 1 diabetes (T1D) yet is hampered by the shortage of available tissue. Recently, two reports from a Viacyte multicenter clinical trial demonstrate the feasibility, safety, and potential efficacy of transplanting macro-encapsulated human stem cell-derived pancreatic endoderm cells into patients with T1D, highlighting the promise of a stem cell-based therapeutic approach.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Diferenciación Celular , Diabetes Mellitus Tipo 1/terapia , Endodermo , Humanos , Células Madre
15.
Biomolecules ; 11(4)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808310

RESUMEN

The pancreatic beta cell is a highly specialized cell type whose primary function is to secrete insulin in response to nutrients to maintain glucose homeostasis in the body. As such, the beta cell has developed unique metabolic characteristics to achieve functionality; in healthy beta cells, the majority of glucose-derived carbons are oxidized and enter the mitochondria in the form of pyruvate. The pyruvate is subsequently metabolized to induce mitochondrial ATP and trigger the downstream insulin secretion response. Thus, in beta cells, mitochondria play a pivotal role in regulating glucose stimulated insulin secretion (GSIS). In type 2 diabetes (T2D), mitochondrial impairment has been shown to play an important role in beta cell dysfunction and loss. In type 1 diabetes (T1D), autoimmunity is the primary trigger of beta cell loss; however, there is accumulating evidence that intrinsic mitochondrial defects could contribute to beta cell susceptibility during proinflammatory conditions. Furthermore, there is speculation that dysfunctional mitochondrial responses could contribute to the formation of autoantigens. In this review, we provide an overview of mitochondrial function in the beta cells, and discuss potential mechanisms by which mitochondrial dysfunction may contribute to T1D pathogenesis.


Asunto(s)
Autoinmunidad/fisiología , Diabetes Mellitus Tipo 1/patología , Células Secretoras de Insulina/patología , Mitocondrias/metabolismo , Animales , Autofagia , Senescencia Celular , Diabetes Mellitus Tipo 1/inmunología , Epítopos , Humanos , Secreción de Insulina , Células Secretoras de Insulina/inmunología , Mitocondrias/patología , Mitofagia
16.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33804882

RESUMEN

Both type 1 and type 2 diabetes are characterized by a progressive loss of beta cell mass that contributes to impaired glucose homeostasis. Although an optimal treatment option would be to simply replace the lost cells, it is now well established that unlike many other organs, the adult pancreas has limited regenerative potential. For this reason, significant research efforts are focusing on methods to induce beta cell proliferation (replication of existing beta cells), promote beta cell formation from alternative endogenous cell sources (neogenesis), and/or generate beta cells from pluripotent stem cells. In this article, we will review (i) endogenous mechanisms of beta cell regeneration during steady state, stress and disease; (ii) efforts to stimulate endogenous regeneration and transdifferentiation; and (iii) exogenous methods of beta cell generation and transplantation.


Asunto(s)
Diabetes Mellitus/terapia , Células Secretoras de Insulina/metabolismo , Regeneración , Animales , Diferenciación Celular , Proliferación Celular , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/fisiología , Trasplante de Células Madre/métodos
17.
Development ; 148(6)2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33658226

RESUMEN

Groucho-related genes (GRGs) are transcriptional co-repressors that are crucial for many developmental processes. Several essential pancreatic transcription factors are capable of interacting with GRGs; however, the in vivo role of GRG-mediated transcriptional repression in pancreas development is still not well understood. In this study, we used complex mouse genetics and transcriptomic analyses to determine that GRG3 is essential for ß cell development, and in the absence of Grg3 there is compensatory upregulation of Grg4Grg3/4 double mutant mice have severe dysregulation of the pancreas gene program with ectopic expression of canonical liver genes and Foxa1, a master regulator of the liver program. Neurod1, an essential ß cell transcription factor and predicted target of Foxa1, becomes downregulated in Grg3/4 mutants, resulting in reduced ß cell proliferation, hyperglycemia, and early lethality. These findings uncover novel functions of GRG-mediated repression during pancreas development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas Co-Represoras/genética , Factor Nuclear 3-alfa del Hepatocito/genética , Páncreas/crecimiento & desarrollo , Proteínas Represoras/genética , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Células Secretoras de Insulina/metabolismo , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Ratones , Mutación/genética , Organogénesis/genética , Páncreas/metabolismo
18.
Diabetes ; 70(5): 1117-1122, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33685924

RESUMEN

Single-cell RNA-sequencing (scRNA-Seq) technologies have greatly enhanced our understanding of islet cell transcriptomes and have revealed the existence of ß-cell heterogeneity. However, comparison of scRNA-Seq data sets from different groups have highlighted inconsistencies in gene expression patterns, primarily due to variable detection of lower abundance transcripts. Furthermore, such analyses are unable to uncover the spatial organization of heterogeneous gene expression. In this study, we used fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) to quantify transcripts in single cells in mouse pancreatic islet sections. We compared the expression patterns of Insulin 2 (Ins2) with Mafa and Ucn3, two genes expressed in ß-cells as they mature, as well as Rgs4, a factor with variably reported expression in the islet. This approach accurately quantified transcripts across a wide range of expression levels, from single copies to >100 copies/cell in one islet. Importantly, fliFISH allowed evaluation of transcript heterogeneity in the spatial context of an intact islet. These studies confirm the existence of a high degree of heterogeneous gene expression levels within the islet and highlight relative and radial expression patterns that likely reflect distinct ß-cell maturation states along the radial axis of the islet.


Asunto(s)
Células Secretoras de Insulina/metabolismo , RNA-Seq/métodos , Análisis de Secuencia de ARN/métodos , Animales , Hibridación Fluorescente in Situ , Factores de Transcripción Maf de Gran Tamaño/genética , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Ratones , Proteínas RGS/genética , Proteínas RGS/metabolismo , Análisis de la Célula Individual , Urocortinas/genética , Urocortinas/metabolismo
20.
Front Genet ; 11: 983, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33088281

RESUMEN

Robust endocrine cell function, particularly ß cell function, is required to maintain blood glucose homeostasis. Diabetes can result from the loss or dysfunction of ß cells. Despite decades of clinical and basic research, the precise regulation of ß cell function and pathogenesis in diabetes remains incompletely understood. In this review, we highlight RNA processing of mRNAs as a rapidly emerging mechanism regulating ß cell function and survival. RNA-binding proteins (RBPs) and RNA modifications are primed to be the next frontier to explain many of the poorly understood molecular processes that regulate ß cell formation and function, and provide an exciting potential for the development of novel therapeutics. Here we outline the current understanding of ß cell specific functions of several characterized RBPs, alternative splicing events, and transcriptome wide changes in RNA methylation. We also highlight several RBPs that are dysregulated in both Type 1 and Type 2 diabetes, and discuss remaining knowledge gaps in the field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...