Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 33(21): 4549-4556.e3, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37757830

RESUMEN

Temperature profoundly impacts all living creatures. In spite of the thermodynamic constraints on biology, some animals have evolved to live and move in extremely cold environments. Here, we investigate behavioral mechanisms of cold tolerance in the snow fly (Chionea spp.), a flightless crane fly that is active throughout the winter in boreal and alpine environments of the northern hemisphere. Using thermal imaging, we show that adult snow flies maintain the ability to walk down to an average body temperature of -7°C. At this supercooling limit, ice crystallization occurs within the snow fly's hemolymph and rapidly spreads throughout the body, resulting in death. However, we discovered that snow flies frequently survive freezing by rapidly amputating legs before ice crystallization can spread to their vital organs. Self-amputation of freezing limbs is a last-ditch tactic to prolong survival in frigid conditions that few animals can endure. Understanding the extreme physiology and behavior of snow insects holds particular significance at this moment when their alpine habitats are rapidly changing due to anthropogenic climate change. VIDEO ABSTRACT.


Asunto(s)
Dípteros , Animales , Congelación , Temperatura , Hielo , Nieve , Frío , Estaciones del Año
2.
Neuron ; 111(20): 3230-3243.e14, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37562405

RESUMEN

Our ability to sense and move our bodies relies on proprioceptors, sensory neurons that detect mechanical forces within the body. Different subtypes of proprioceptors detect different kinematic features, such as joint position, movement, and vibration, but the mechanisms that underlie proprioceptor feature selectivity remain poorly understood. Using single-nucleus RNA sequencing (RNA-seq), we found that proprioceptor subtypes in the Drosophila leg lack differential expression of mechanosensitive ion channels. However, anatomical reconstruction of the proprioceptors and connected tendons revealed major biomechanical differences between subtypes. We built a model of the proprioceptors and tendons that identified a biomechanical mechanism for joint angle selectivity and predicted the existence of a topographic map of joint angle, which we confirmed using calcium imaging. Our findings suggest that biomechanical specialization is a key determinant of proprioceptor feature selectivity in Drosophila. More broadly, the discovery of proprioceptive maps reveals common organizational principles between proprioception and other topographically organized sensory systems.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Células Receptoras Sensoriales/fisiología , Propiocepción/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Canales Iónicos/metabolismo
3.
bioRxiv ; 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37398440

RESUMEN

Animal movement is controlled by motor neurons (MNs), which project out of the central nervous system to activate muscles. Because individual muscles may be used in many different behaviors, MN activity must be flexibly coordinated by dedicated premotor circuitry, the organization of which remains largely unknown. Here, we use comprehensive reconstruction of neuron anatomy and synaptic connectivity from volumetric electron microscopy (i.e., connectomics) to analyze the wiring logic of motor circuits controlling the Drosophila leg and wing. We find that both leg and wing premotor networks are organized into modules that link MNs innervating muscles with related functions. However, the connectivity patterns within leg and wing motor modules are distinct. Leg premotor neurons exhibit proportional gradients of synaptic input onto MNs within each module, revealing a novel circuit basis for hierarchical MN recruitment. In comparison, wing premotor neurons lack proportional synaptic connectivity, which may allow muscles to be recruited in different combinations or with different relative timing. By comparing the architecture of distinct limb motor control systems within the same animal, we identify common principles of premotor network organization and specializations that reflect the unique biomechanical constraints and evolutionary origins of leg and wing motor control.

4.
Elife ; 122023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37347531

RESUMEN

Abrams et al. report that a simple dietary supplement is sufficient to induce appendage regeneration in jellyfish, fruit flies, and mice (Abrams et al., 2021). This conclusion is surprising because it was previously thought that flies and mice lack the capacity for regeneration after injury. We replicated the Drosophila experiments of Abrams et al. but did not observe any instances of leg regeneration. We also conclude that the "white blob" observed at the amputation site by Abrams et al. consists of bacteria and is not regenerated tissue.


Asunto(s)
Cnidarios , Escifozoos , Animales , Ratones , Drosophila , Amputación Quirúrgica , Suplementos Dietéticos
5.
Genetics ; 223(2)2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36576887

RESUMEN

Chitinase-like proteins (CLPs) are members of the family 18 glycosyl hydrolases, which include chitinases and the enzymatically inactive CLPs. A mutation in the enzyme's catalytic site, conserved in vertebrates and invertebrates, allowed CLPs to evolve independently with functions that do not require chitinase activity. CLPs normally function during inflammatory responses, wound healing, and host defense, but when they persist at excessive levels at sites of chronic inflammation and in tissue-remodeling disorders, they correlate positively with disease progression and poor prognosis. Little is known, however, about their physiological function. Drosophila melanogaster has 6 CLPs, termed Imaginal disk growth factors (Idgfs), encoded by Idgf1, Idgf2, Idgf3, Idgf4, Idgf5, and Idgf6. In this study, we developed tools to facilitate characterization of the physiological roles of the Idgfs by deleting each of the Idgf genes using the CRISPR/Cas9 system and assessing loss-of-function phenotypes. Using null lines, we showed that loss of function for all 6 Idgf proteins significantly lowers viability and fertility. We also showed that Idgfs play roles in epithelial morphogenesis, maintaining proper epithelial architecture and cell shape, regulating E-cadherin and cortical actin, and remarkably, protecting these tissues against CO2 exposure. Defining the normal molecular mechanisms of CLPs is a key to understanding how deviations tip the balance from a physiological to a pathological state.


Asunto(s)
Quitinasas , Proteínas de Drosophila , Animales , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Quitinasas/genética , Quitinasas/metabolismo , Dióxido de Carbono , Discos Imaginales/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Morfogénesis/genética , Péptidos y Proteínas de Señalización Intracelular
6.
Curr Biol ; 31(23): 5163-5175.e7, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34637749

RESUMEN

To effectively control their bodies, animals rely on feedback from proprioceptive mechanosensory neurons. In the Drosophila leg, different proprioceptor subtypes monitor joint position, movement direction, and vibration. Here, we investigate how these diverse sensory signals are integrated by central proprioceptive circuits. We find that signals for leg joint position and directional movement converge in second-order neurons, revealing pathways for local feedback control of leg posture. Distinct populations of second-order neurons integrate tibia vibration signals across pairs of legs, suggesting a role in detecting external substrate vibration. In each pathway, the flow of sensory information is dynamically gated and sculpted by inhibition. Overall, our results reveal parallel pathways for processing of internal and external mechanosensory signals, which we propose mediate feedback control of leg movement and vibration sensing, respectively. The existence of a functional connectivity map also provides a resource for interpreting connectomic reconstruction of neural circuits for leg proprioception.


Asunto(s)
Drosophila , Propiocepción , Animales , Movimiento , Propiocepción/fisiología , Células Receptoras Sensoriales/fisiología
7.
Cell ; 184(3): 759-774.e18, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33400916

RESUMEN

To investigate circuit mechanisms underlying locomotor behavior, we used serial-section electron microscopy (EM) to acquire a synapse-resolution dataset containing the ventral nerve cord (VNC) of an adult female Drosophila melanogaster. To generate this dataset, we developed GridTape, a technology that combines automated serial-section collection with automated high-throughput transmission EM. Using this dataset, we studied neuronal networks that control leg and wing movements by reconstructing all 507 motor neurons that control the limbs. We show that a specific class of leg sensory neurons synapses directly onto motor neurons with the largest-caliber axons on both sides of the body, representing a unique pathway for fast limb control. We provide open access to the dataset and reconstructions registered to a standard atlas to permit matching of cells between EM and light microscopy data. We also provide GridTape instrumentation designs and software to make large-scale EM more accessible and affordable to the scientific community.


Asunto(s)
Envejecimiento/fisiología , Drosophila melanogaster/ultraestructura , Microscopía Electrónica de Transmisión , Neuronas Motoras/ultraestructura , Células Receptoras Sensoriales/ultraestructura , Animales , Automatización , Conectoma , Extremidades/inervación , Nervios Periféricos/ultraestructura , Sinapsis/ultraestructura
8.
Elife ; 92020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33263281

RESUMEN

Proprioception, the sense of self-movement and position, is mediated by mechanosensory neurons that detect diverse features of body kinematics. Although proprioceptive feedback is crucial for accurate motor control, little is known about how downstream circuits transform limb sensory information to guide motor output. Here we investigate neural circuits in Drosophila that process proprioceptive information from the fly leg. We identify three cell types from distinct developmental lineages that are positioned to receive input from proprioceptor subtypes encoding tibia position, movement, and vibration. 13Bα neurons encode femur-tibia joint angle and mediate postural changes in tibia position. 9Aα neurons also drive changes in leg posture, but encode a combination of directional movement, high frequency vibration, and joint angle. Activating 10Bα neurons, which encode tibia vibration at specific joint angles, elicits pausing in walking flies. Altogether, our results reveal that central circuits integrate information across proprioceptor subtypes to construct complex sensorimotor representations that mediate diverse behaviors, including reflexive control of limb posture and detection of leg vibration.


Asunto(s)
Retroalimentación Sensorial/fisiología , Vías Nerviosas/fisiología , Propiocepción/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Fenómenos Biomecánicos , Drosophila melanogaster , Miembro Posterior/inervación , Músculo Esquelético/inervación , Vías Nerviosas/citología , Células Receptoras Sensoriales/citología
9.
Curr Biol ; 27(3): 345-358, 2017 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-28132816

RESUMEN

Animals face the daunting task of controlling their limbs using a small set of highly constrained actuators. This problem is particularly demanding for insects such as Drosophila, which must adjust wing motion for both quick voluntary maneuvers and slow compensatory reflexes using only a dozen pairs of muscles. To identify strategies by which animals execute precise actions using sparse motor networks, we imaged the activity of a complete ensemble of wing control muscles in intact, flying flies. Our experiments uncovered a remarkably efficient logic in which each of the four skeletal elements at the base of the wing are equipped with both large phasically active muscles capable of executing large changes and smaller tonically active muscles specialized for continuous fine-scaled adjustments. Based on the responses to a broad panel of visual motion stimuli, we have developed a model by which the motor array regulates aerodynamically functional features of wing motion. VIDEO ABSTRACT.


Asunto(s)
Drosophila/fisiología , Vuelo Animal , Alas de Animales/fisiología , Animales , Fenómenos Biomecánicos , Calcio/metabolismo , Drosophila/anatomía & histología , Femenino , Movimiento (Física) , Músculos/anatomía & histología , Músculos/fisiología , Alas de Animales/anatomía & histología
10.
Dev Biol ; 373(2): 290-9, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23165292

RESUMEN

During Drosophila development, the transcription factor Sp1 is necessary for proper leg growth and also to repress wing development. Here we test the role of Sp1 during imaginal disc regeneration. Ubiquitous expression of wg induces a regeneration blastema in the dorsal aspect of the leg disc. Within this outgrowth, the wing selector gene vg is activated in some cells, changing their fate to wing identity in a process known as transdetermination. In this report we demonstrate that reducing the gene copy number of Sp1 significantly increases both the frequency and the area of transdetermination in regenerating leg discs. By examining the expression of known Sp1 target genes, we also show that the proximo-distal patterning gene dachshund is downregulated dorsally, leading to a break in its normal ring-shaped expression pattern. We further report that transdetermination, as evidenced by Vg expression, is only observed when there is a broken ring of Dachshund expression. Combined, these studies establish a role for Sp1 in leg-to-wing transdetermination.


Asunto(s)
Tipificación del Cuerpo , Diferenciación Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Extremidades/crecimiento & desarrollo , Factor de Transcripción Sp1/metabolismo , Alas de Animales/crecimiento & desarrollo , Animales , Tipificación del Cuerpo/genética , Regulación hacia Abajo/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Larva/crecimiento & desarrollo , Larva/metabolismo , Modelos Biológicos , Factor de Transcripción Sp1/genética , Coloración y Etiquetado , Regulación hacia Arriba/genética , Alas de Animales/metabolismo
11.
Dev Biol ; 369(1): 76-90, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22683807

RESUMEN

The imaginal discs of Drosophila are the larval primordia for the adult cuticular structures of the adult fly. Fate maps of different discs have been generated that show the localization of prospective adult structures. Even though the three legs differ in their morphology, only the fate map for the T1 (prothoracic) leg disc has been generated. Here we present fate maps for the T2 (meso-) and T3 (metathoracic) leg discs. We show that there are many similarities to the map of the T1 leg disc. However, there are also significant differences in the contributions of each disc to the thorax, in the morphology of joints connecting the legs to the thorax, in bristle patterns, and in the positioning of some sensory organs. We also tested the developmental potential of disc fragments and observed that T2 and T3 leg discs have more limited plasticity and are unable to transdetermine. The differences in the cuticle patterns between legs are robust and conserved in many species of dipterans. While most previous analyses of imaginal disc development have not distinguished between the different leg discs, we believe that the underlying differences of the three leg discs demonstrated here cannot be ignored when studying leg disc development.


Asunto(s)
Tipificación del Cuerpo , Drosophila melanogaster/crecimiento & desarrollo , Discos Imaginales/crecimiento & desarrollo , Envejecimiento/fisiología , Animales , Biomarcadores/metabolismo , Extremidades/crecimiento & desarrollo , Discos Imaginales/trasplante , Regeneración/fisiología
12.
Dev Biol ; 356(2): 576-87, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21722631

RESUMEN

Cell proliferation is required for tissue regeneration, yet the dynamics of proliferation during regeneration are not well understood. Here we investigated the proliferation of eye and leg regeneration in fragments of Drosophila imaginal discs. Using twin spot clones, we followed the proliferation and fates of sister cells arising from the same mother cell in the regeneration blastema. We show that the mother cell gives rise to two sisters that participate equally in regeneration. However, when cells switch disc identity and transdetermine to another fate, they fail to turn off the cell cycle and continue dividing long after regeneration is complete. We further demonstrate that the regeneration blastema moves as a sweep of proliferation, in which cells are displaced. Our results suggest that regenerating cells stop dividing once the missing parts are formed, but if they undergo a switch in cell fate, the proliferation clock is reset.


Asunto(s)
Drosophila melanogaster/embriología , Extremidades/embriología , Ojo/embriología , Regeneración , Animales , Bromodesoxiuridina/metabolismo , División Celular , Proliferación Celular , Drosophila melanogaster/citología
13.
Dev Biol ; 347(2): 315-24, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20816798

RESUMEN

Imaginal discs of Drosophila have the remarkable ability to regenerate. After fragmentation wound healing occurs, ectopic wg is induced and a blastema is formed. In some, but not all fragments, the blastema will replace missing structures and a few cells can become more plastic and transdetermine to structures of other discs. A series of systematic cuts through the first leg disc revealed that a cut must transect the dorsal-proximal disc area and that the fragment must also include wg-competent cells. Fragments that fail to both transdetermine and regenerate missing structures will do both when provided with exogenous Wg, demonstrating the necessity of Wg in regenerative processes. In intact leg discs ubiquitously expressed low levels of Wg also leads to blastema formation, regeneration and transdetermination. Two days after exogenous wg induction the endogenous gene is activated, leading to elevated levels of Wg in the dorsal aspect of the leg disc. We identified a wg enhancer that regulates ectopic wg expression. Deletion of this enhancer increases transdetermination, but lowers the amount of ectopic Wg. We speculate that this lessens repression of dpp dorsally, and thus creates a permissive condition under which the balance of ectopic Wg and Dpp is favorable for transdetermination.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Regeneración/genética , Regeneración/fisiología , Proteína Wnt1/genética , Proteína Wnt1/fisiología , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Cartilla de ADN/genética , Drosophila melanogaster/crecimiento & desarrollo , Elementos de Facilitación Genéticos , Extremidades/crecimiento & desarrollo , Extremidades/fisiología , Genes de Insecto , Activación Transcripcional
14.
Nat Methods ; 6(8): 600-2, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19633664

RESUMEN

In Drosophila melanogaster, widely used mitotic recombination-based strategies generate mosaic flies with positive readout for only one daughter cell after division. To differentially label both daughter cells, we developed the twin spot generator (TSG) technique, which through mitotic recombination generates green and red twin spots that are detectable after the first cell division as single cells. We propose wide applications of TSG to lineage and genetic mosaic studies.


Asunto(s)
Linaje de la Célula , Drosophila melanogaster/genética , Genómica/métodos , Mitosis , Recombinación Genética , Animales , Células Clonales , Drosophila melanogaster/citología , Fluorometría , Genómica/instrumentación , Mutación
15.
Dev Biol ; 319(1): 68-77, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18485344

RESUMEN

Regeneration is a vital process to maintain and repair tissues. Despite the importance of regeneration, the genes responsible for regenerative growth remain largely unknown. In Drosophila, imaginal disc regeneration can be induced either by fragmentation and in vivo culture or in situ by ubiquitous expression of wingless (wg/wnt1). Imaginal discs, like appendages in lower vertebrates, initiate regeneration by wound healing and proliferation at the wound site, forming a regeneration blastema. Most blastema cells maintain their disc-specific identity during regeneration; a few cells however, exhibit stem-cell like properties and switch to a different fate, in a phenomenon known as transdetermination. We identified three genes, regeneration (rgn), augmenter of liver regeneration (alr) and Matrix metalloproteinase-1 (Mmp1) expressed specifically in blastema cells during disc regeneration. Mutations in these genes affect both fragmentation- and wg-induced regeneration by either delaying, reducing or positioning the regeneration blastema. In addition to the modifications of blastema homeostasis, mutations in the three genes alter the rate of regeneration-induced transdetermination. We propose that these genes function in regenerative proliferation, growth and regulate cellular plasticity.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Metaloproteinasa 1 de la Matriz/metabolismo , Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Animales , Diferenciación Celular , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Humanos , Metaloproteinasa 1 de la Matriz/genética , Datos de Secuencia Molecular , Oxidorreductasas/química , Oxidorreductasas/genética , Regeneración , Alineación de Secuencia
16.
Development ; 132(16): 3753-65, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16077094

RESUMEN

Drosophila imaginal disc cells can switch fates by transdetermining from one determined state to another. We analyzed the expression profiles of cells induced by ectopic Wingless expression to transdetermine from leg to wing by dissecting transdetermined cells and hybridizing probes generated by linear RNA amplification to DNA microarrays. Changes in expression levels implicated a number of genes: lamina ancestor, CG12534 (a gene orthologous to mouse augmenter of liver regeneration), Notch pathway members, and the Polycomb and trithorax groups of chromatin regulators. Functional tests revealed that transdetermination was significantly affected in mutants for lama and seven different PcG and trxG genes. These results validate our methods for expression profiling as a way to analyze developmental programs, and show that modifications to chromatin structure are key to changes in cell fate. Our findings are likely to be relevant to the mechanisms that lead to disease when homologs of Wingless are expressed at abnormal levels and to the manifestation of pluripotency of stem cells.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Estructuras Embrionarias/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética , Animales , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Estructuras Embrionarias/anatomía & histología , Perfilación de la Expresión Génica , Hibridación in Situ , Morfogénesis , Familia de Multigenes , Proteínas del Tejido Nervioso/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Complejo Represivo Polycomb 1 , Factores de Transcripción/metabolismo
17.
Cell ; 120(3): 383-93, 2005 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-15707896

RESUMEN

When Drosophila imaginal discs regenerate, specific groups of cells can switch disc identity so that, for example, cells determined for leg identity switch to wing. Such switches in cell determination are known as transdetermination. We have developed a system by which individual cells are marked and monitored in vivo as they transdetermine so that their proliferation, cell sizes, and differentiation are accurately traced. Here, we document that when cells transdetermine, they do not convert to a younger cell cycle. Instead, cell cycle changes precede transdetermination and are different from those observed at any time in normal development. We propose that it is not a younger but a unique cell cycle progression and a big cell size that conditions the cells for developmental plasticity.


Asunto(s)
Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Drosophila melanogaster/fisiología , Células Madre Multipotentes/fisiología , Regeneración/fisiología , Animales , Proliferación Celular , Tamaño de la Célula , Drosophila melanogaster/citología , Células Epiteliales/citología , Células Epiteliales/fisiología , Extremidades/crecimiento & desarrollo , Modelos Animales , Células Madre Multipotentes/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...