Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(1): 1786-1797, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222609

RESUMEN

In this work, one new centrosymmetric trinuclear Zn(II) complex 1, [{(OCN)Zn(L)}2Zn], using a salen-type ligand (H2L) in the presence of OCN- was synthesized and characterized via elemental, spectral, SEM-EDX, and single-crystal X-ray diffraction (SCXRD) study. In 1, SCXRD reveals two different stereochemical environments of zinc metal ions; one terminal Zn(II) center adopts square pyramidal geometries with the Addison parameter (τ) 0.095, and the central Zn(II) is tetracoordinated tetrahedral geometry. This article provides evidence of the significance and presence of spodium bonds (SpBs) in solid-state crystal structures involving a pseudotetrahedral environment of the central Zn-atom. X-ray structures reveal intramolecular Zn···O SpBs caused by the methoxy (-OCH3) substituent O-atom adjacent to the coordinated phenoxy O-atom. These noncovalent interactions have been thoroughly studied using density functional theory calculations at the RI-BP86[2]-D3[3]/def2-TZVP level of theory that characterizes the nature of SpBs, including the Baders quantum theory of atoms-in-molecules "QTAIM", molecular electrostatic potential (MEP) surface, and noncovalent index plot (NCI). In addition, a unique complex-isomer-based theoretical model has been vividly employed to estimate the SpBs energy in the complex. Natural bond orbital (NBO) analysis also tries to establish the differentiation between σ-hole and π-hole SpBs' natures more authentically. The complex energy frameworks were used to investigate noncovalent interactions. To better understand the different intermolecular interactions, we conducted a Hirshfeld surface, which revealed N···H (15.4%) and O···H (9.1%) contacts and Zn···O (5.1%) (SpBs).

2.
Chemistry ; 29(52): e202301473, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37401206

RESUMEN

The interaction between pyridines and the π-hole of BeH2 leads to the formation of strong beryllium-bonded complexes. Theoretical investigations demonstrate that the Be-N bonding interaction can effectively regulate the electronic current through a molecular junction. The electronic conductance exhibits distinct switching behavior depending on the substituent groups at the para position of pyridine, highlighting the role of Be-N interaction as a potent chemical gate in the proposed device. The complexes exhibit short intermolecular distances ranging from 1.724 to 1.752 Å, emphasizing their strong binding. Detailed analysis of electronic rearrangements and geometric perturbations upon complex formation provides insights into the underlying reasons for the formation of such strong Be-N bonds, with bond strengths varying from -116.25 to -92.96 kJ/mol. Moreover, the influence of chemical substituents on the local electronic transmission of the beryllium-bonded complex offers valuable insights for the implementation of a secondary chemical gate in single-molecule devices. This study paves the way for the development of chemically gateable, functional single-molecule transistors, advancing the design and fabrication of multifunctional single-molecule devices in the nanoscale regime.

3.
Heliyon ; 9(6): e16057, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37251479

RESUMEN

In this article, we have synthesized two contemporary ortho-vanillin-based Salen-type ligands (H2L1/H2L2) characterized by modern spectroscopic tools. EDX analysis supports the elemental composition (C, N, O, and Br). SEM examined the morphology of the synthesized compounds. The molecular geometry was optimized in the gas phase using B3LYP-D3/6-311G (d, p) level. The global reactivity parameters, HOMO-LUMO energy gap (Δ), atomic properties, MESP, and ADME/T, vividly explore the chemical reactivity and toxicity of two Salen-type ligands. The DFT simulated IR/NMR characterized essential structural assignments, and UV-Visible spectra were employed to predict the optical properties. The article demonstrated in silico molecular docking against the Gm + ve Bacillus subtilis (6UF6), and Gm -ve Proteus Vulgaris establishes the ligand binding ability with essential amino acids through conventional H-bonding or other significant interactions. The docking simulation is compared for two compounds better than the control drugs and confirms the antimicrobial activity. The theoretical drug-like properties have been explored in-depth by ADME/T using the SWISSADME database. The analysis estimated the molecule's lipophilicity, the consensus P0/W, and water solubility. Thus, using various pharmaco-logical parameters, toxicity explains where the electron-withdrawing Br group plays a more toxic effect in H2L2 than in H2L1.

4.
Chemphyschem ; 23(10): e202200146, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35362233

RESUMEN

Ab initio calculation at the MP2/aug-cc-pVTZ level has been performed on the π-hole based N… Si tetrel bonded complexes between substituted pyridines and H2 SiO. The primary aim of the study is to find out the effect of substitution on the strength and nature of this tetrel bond, and its similarity/difference with the N… C tetrel bond. Correlation between the strength of the N… Si bond and several molecular properties of the Lewis acid (H2 SiO) and base (pyridines) are explored. The properties of the tetrel bond are analyzed using AIM, NBO, and symmetry-adapted perturbation theory calculations. The complexes are characterized with short N… Si intermolecular distances and high binding energies ranging between -142.72 and -115.37 kJ/mol. The high value of deformation energy indicates significant geometrical distortion of the monomer units. The AIM and NBO analysis reveal significant coordinate covalent bond character of the N⋅⋅⋅Si π-hole bond. Sharp differences are also noticed in the orbital interactions present in the N⋅⋅⋅Si and N⋅⋅⋅C tetrel bonds.

5.
Angew Chem Int Ed Engl ; 60(23): 12841-12846, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33779114

RESUMEN

Higher cocrystal synthesis depends acutely on a knowledge of supramolecular synthons. We report three synthetic approaches towards ternary halogen bonded cocrystals that illustrate specificity and generality. Electrophilicity/nucleophilicity differences are needed among alternative sites of halogen bond formation. The two halogen bonds A⋅⋅⋅B and B⋅⋅⋅C in a halogen bonded ternary cocrystal ABC need to be of different strength. Interaction mimicry of hydrogen bonds by halogen bonds is a viable approach towards ternaries as illustrated with the pyrene structure. Finally, the crystal engineer should well be able to anticipate halogen bonds that are stronger than hydrogen bonds.

6.
ACS Omega ; 5(37): 24095-24105, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32984731

RESUMEN

Ab initio MP2/aug-cc-pVTZ calculations have been carried out in order to study the nature of P···Cl halogen bonding interaction between a phosphorus atom in an aromatic ring in para-substituted phosphabenzene (PPBZ) and ClF molecule. The interaction of PPBZ with ClF results in two different types of complexes: (i) complex formation through the chlorine-shared halogen bond (T1-X-PPBZ·ClF) and (ii) complex formation via halogen-π interaction (T2-X-PPBZ·ClF). T1-X-PPBZ·ClF complexes are found to be more stable than the T2-X-PPBZ·ClF complexes. This work also presents a general criterion to distinguish a chlorine-shared halogen bond from a traditional halogen bond and sheds light on the formation of the chlorine-shared halogen bond. The binding energy of T1-X-PPBZ·ClF complexes correlates well with the negative electrostatic potential of the P atom and PA value of the substituted PPBZ. The properties of both T1-X-PPBZ·ClF and T2-X-PPBZ·ClF complexes are analyzed using atom-in-molecule, natural bond orbital, and symmetry-adapted perturbation theory calculations. The variation of the Cl-F bond distances and the redshifts of the ν(ClF) vibration resulting from the interaction with PPBZs are discussed.

7.
Molecules ; 25(2)2020 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-31963861

RESUMEN

Ab initio calculations were carried out to investigate the interaction between para-substituted pyridines (X-C5H4N, X=NH2, CH3, H, CN, NO2) and OCS. Three stable structures of pyridine.OCS complexes were detected at the MP2=full/aug-cc-pVDZ level. The A structure is characterized by N…S chalcogen bonds and has binding energies between -9.58 and -12.24 kJ/mol. The B structure is bonded by N…C tetrel bond and has binding energies between -10.78 and -11.81 kJ/mol. The C structure is characterized by π-interaction and has binding energies between -10.76 and -13.33 kJ/mol. The properties of the systems were analyzed by AIM, NBO, and SAPT calculations. The role of the electrostatic potential of the pyridines on the properties of the systems is outlined. The frequency shift of relevant vibrational modes is analyzed.


Asunto(s)
Modelos Moleculares , Piridinas/química , Carbono , Electrones , Conformación Molecular , Oxígeno , Electricidad Estática , Azufre , Termodinámica , Vibración
8.
J Phys Chem A ; 122(36): 7142-7150, 2018 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-30122037

RESUMEN

A theoretical investigation on the interaction of various sulfides and their fluorinated counterparts (H2S, HSF, F2S, CH3SH, CH3SF, CH2FSH, CH2FSF, NH2SH, NH2SF) with atomic chlorine has been carried out using density functional theory (DFT) based LC-BLYP/aug-cc-pVTZ and sophisticated ab initio CCSD(T)/aug-cc-pVQZ methods. The present study is intended to discuss the influence of the substituents implanted at the sulfur atom on the bonding parameters. The optimized geometries reveal that intermolecular S···Cl distances are short and range between 2.423 and 2.561 Å. A strong contraction of the S-F bond is also predicted. Two-center-three-electron S···Cl bonds are formed; the interaction energies are large and range from -33.9 to -70.1 kJ mol-1. Very surprisingly, the interaction energies are greater and the intermolecular distances are shorter for F-substituted sulfides than for unsubstituted ones. This is in complete contrast with the lower proton affinities and less negative electrostatic potentials of fluorinated sulfides. AIM analysis, the charge transfer from the sulfur atom to the Cl atom, and the spin densities on the Cl and S atoms are considered to explain this unusual behavior. The hyperconjugation energies from the LP(F) to the σ*(S-Cl) antibonding orbital can be considered as one of the stabilizing factors for the greater stability of the fluorinated complexes over the nonfluorinated ones.

9.
J Mol Model ; 19(11): 5045-52, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24077838

RESUMEN

The conformation and the interaction of CHF2OCF2CHF2 (desflurane II) with one water molecule is investigated theoretically using the ab initio MP2/aug-cc-pvdz and DFT-based M062X/6-311++G(d,p) methods. The calculations include the optimized geometries, the harmonic frequencies of relevant vibrational modes along with a natural bond orbital (NBO) analysis including the NBO charges, the hybridization of the C atom and the intra- and intermolecular hyperconjugation energies. In the two most stable conformers, the CH bond of the F2HCO- group occupies the gauche position. The hyperconjugation energies are about the same for both conformers and the conformational preference depends on the interaction between the non-bonded F and H atoms. The deprotonation enthalpies of the CH bonds are about the same for both conformers, the proton affinity of the less stable conformer being 3 kcal mol−1 higher. Both conformers of desflurane II interact with water forming cyclic complexes characterized by CH…O and OH…F hydrogen bonds. The binding energies are moderate, ranging from −2.4 to −3.2 kcal mol−1 at the MP2 level. The origin of the blue shifts of the ν(CH) vibrations is analyzed. In three of the complexes, the water molecule acts as an electron donor. Interestingly, in these cases a charge transfer is also directed to the non bonded OH group of the water molecule. This effect seems to be a property of polyfluorinated ethers.


Asunto(s)
Éteres de Etila/química , Fluorocarburos/química , Isoflurano/análogos & derivados , Éteres Metílicos/química , Agua/química , Anestésicos/química , Desflurano , Enlace de Hidrógeno , Isoflurano/química , Conformación Molecular , Termodinámica , Vibración
10.
J Phys Chem A ; 117(33): 8010-6, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23876015

RESUMEN

Theoretical investigations are carried out on the interaction between fluorinated dimethyl ethers (FDME, nF = 0-4) and the Cl atom. Short intermolecular O···Cl distances between 2.401 and 2.938 Å reveal the formation of a new class of complexes. The interaction energies calculated with the G2(MP2) method range between -9.1 (nF = 4) and -26.0 (nF = 0) kJ/mol. The charge transfer occurring from the ethers to atomic Cl is moderate and ranges between 0.012 e (nF = 4) to 0.188 e (nF = 0). The binding energies are linearly related to the proton affinity, to the charge transfer (CT) occurring in the molecular system and inversely proportional to the ionization potential and electron affinity (IP-EA) values. The CT and spin density data indicate substantial two-center-three-electron O···Cl interaction in CH3OCH3···Cl and CH3OCH2F···Cl systems, whereas for highly fluorinated ethers the interaction is predominantly electrostatic in nature. The formation of the complex results in a contraction of the CH bonds, especially in the gauche position. The blue shifts of the C-H stretching vibrations calculated in the partially deuterated isotopomers range between 2 and 54 cm(-1) and are correlated to the variation of the CH distances.


Asunto(s)
Cloruros/química , Electrones , Éteres Metílicos/química , Oxígeno/química , Teoría Cuántica
11.
J Phys Chem A ; 117(36): 8545-54, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-23547928

RESUMEN

Ab initio MP2/aug-cc-pvDZ and density functional B3LYP calculations with the 6-311++G(d,p) basis set are performed to investigate the conformation of desflurane (CHF2OCHFCF3), its acidity/basicity and its interaction with one water molecule. The calculations include the optimized geometries, the harmonic frequencies of relevant vibrational modes, the binding energies with water, and a detailed natural bond orbital (NBO) analysis Iincluding the NBO charges, the hybridization of the C atoms and the intra- and intermolecular hyperconjugations. The relative energies of the two most stable conformers are discussed as a function of the total hyperconjugative energies resulting from the interaction of lone pairs of the O and F atoms to the different antibonding orbitals of desflurane. The proton affinity is the same for both conformers but the acidity of the CH bond is larger for the less stable conformer. The binding energies of the complexes of two desflurane conformers with one water molecule range from -2.75 to -3.23 kcal mol(-1). Depending on the structure of the complexes, the CH bonds involved in the interaction are contracted or elongated. The σ*(CH) occupation predominates over the hybridization effect in determining the CH bond length. There is an unexpected charge transfer to the external OH bond of the water molecule. This effect is in good agreement with theoretical data on the complexes between fluorinated dimethyl ethers and water and seems to depend on the number of F atoms implanted on the ether molecule.


Asunto(s)
Isoflurano/análogos & derivados , Teoría Cuántica , Agua/química , Desflurano , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Isoflurano/química , Modelos Moleculares , Conformación Molecular , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...