Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Crystallogr ; 46(Pt 4): 874-881, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24046491

RESUMEN

In this work epitaxial growth of cobalt on CaF2(111), (110) and (001) surfaces has been extensively studied. It has been shown by atomic force microscopy that at selected growth conditions stand-alone faceted Co nanoparticles are formed on a fluorite surface. Grazing-incidence X-ray diffraction (GIXD) and reflection high-energy electron diffraction (RHEED) studies have revealed that the particles crystallize in the face-centered cubic lattice structure otherwise non-achievable in bulk cobalt under normal conditions. The particles were found to inherit lattice orientation from the underlying CaF2 layer. Three-dimensional reciprocal space mapping carried out using X-ray and electron diffraction has revealed that there exist long bright 〈111〉 streaks passing through the cobalt Bragg reflections. These streaks are attributed to stacking faults formed in the crystal lattice of larger islands upon coalescence of independently nucleated smaller islands. Distinguished from the stacking fault streaks, crystal truncation rods perpendicular to the {111} and {001} particle facets have been observed. Finally, grazing-incidence small-angle X-ray scattering (GISAXS) has been applied to decouple the shape-related scattering from that induced by the crystal lattice defects. Particle faceting has been verified by modeling the GISAXS patterns. The work demonstrates the importance of three-dimensional reciprocal space mapping in the study of epitaxial nanoparticles.

2.
J Phys Condens Matter ; 25(4): 046002, 2013 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-23238356

RESUMEN

Cobalt nano-structured ultrathin films were grown on orthorhombic MnF(2) by molecular beam epitaxy on CaF(2) epitaxial layers deposited on Si(111) substrates. The Co film was grown at room temperature. It was found to be polycrystalline, forming nano-islands with height≈diameter≤10 nm. X-ray absorption evidences the chemical stability of the Co/MnF(2) interface. Remarkably, x-ray magnetic circular dichroism (XMCD) demonstrates that the Co induces a net magnetization on the Mn ions close to the interface. The magnetic moments of these Mn ions couple antiparallel to the Co and rotate upon field reversal following the magnetization of the Co both below and high above the Néel temperature of MnF(2) (T(N) = 67 K). The density of coupled Mn moments is found to be temperature dependent, with an equivalent thickness of ~1.5 MnF(2) monolayers at 20 K, decreasing to about ~0.5 ML as the temperature is raised to 300 K. Interestingly, the intensity of the Mn XMCD signal appears to be related to the coercivity of the Co layer. This behavior is interpreted in terms of the competition between thermal fluctuations, exchange coupling between Co and Mn at the interface and, at low temperature, the antiferromagnetic order in MnF(2).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...