Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 1055, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658141

RESUMEN

Hierarchical guidance is developed for three-dimensional (3D) nanoscale X-ray imaging, enabling identification, refinement, and tracking of regions of interest (ROIs) within specimens considerably exceeding the field of view. This opens up new possibilities for in situ investigations. Experimentally, the approach takes advantage of rapid multiscale measurements based on magnified projection microscopy featuring continuous zoom capabilities. Immediate and continuous feedback on the subsequent experimental progress is enabled by suitable on-the-fly data processing. For this, by theoretical justification and experimental validation, so-called quasi-particle phase-retrieval is generalised to conical-beam conditions, being key for sufficiently fast computation without significant loss of imaging quality and resolution compared to common approaches for holographic microscopy. Exploiting 3D laminography, particularly suited for imaging of ROIs in laterally extended plate-like samples, the potential of hierarchical guidance is demonstrated by the in situ investigation of damage nucleation inside alloy sheets under engineering-relevant boundary conditions, providing novel insight into the nanoscale morphological development of void and particle clusters under mechanical load. Combined with digital volume correlation, we study deformation kinematics with unprecedented spatial resolution. Correlation of mesoscale (i.e. strain fields) and nanoscale (i.e. particle cracking) evolution opens new routes for the understanding of damage nucleation within sheet materials with application-relevant dimensions.

2.
J Synchrotron Radiat ; 29(Pt 3): 843-852, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35511016

RESUMEN

X-ray nano-tomography with phase contrast (nanoCT) using synchrotron radiation is a powerful tool to non-destructively investigate 3D material properties at the nanoscale. In large bone lesions, such as severe bone fractures, bone cancer or other diseases, bone grafts substituting the lost bone might be necessary. Such grafts can be of biological origin or be composed of a synthetic bone substitute. The long-term functioning of artificial bone substitutes depends on many factors. Synchrotron nanoCT imaging has great potential to contribute to further the understanding of integration of implants into bone tissue by imaging the spatial interaction between bone tissue and implant, and by accessing the interface between implant material and bone tissue. With this aim, a methodology for evaluating the image quality is presented for in-line phase contrast nanoCT images of bone scaffold samples. A PMMA-embedded tricalcium phosphate scaffold was used with both a closed and an open porosity structure and bone ingrowths as a representative system of three known materials. Parameters such as spatial resolution and signal-to-noise ratio were extracted and used to explore and quantitatively compare the effects of implementation choices in the imaging setup, such as camera technology and imaging energy, on the resulting image quality. Increasing the X-ray energy from 17.5 keV to 29.6 keV leads to a notable improvement in image quality regardless of the camera technology used, with the two tested camera setups performing at a comparable level when the recorded intensity was kept constant.


Asunto(s)
Materiales Biocompatibles , Tomografía Computarizada por Rayos X , Huesos/diagnóstico por imagen , Imagenología Tridimensional/métodos , Microscopía de Contraste de Fase , Sincrotrones
3.
Proc Natl Acad Sci U S A ; 119(12): e2109717119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35298337

RESUMEN

SignificanceTo move efficiently, animals must continuously work out their x,y,z positions with respect to real-world objects, and many animals have a pair of eyes to achieve this. How photoreceptors actively sample the eyes' optical image disparity is not understood because this fundamental information-limiting step has not been investigated in vivo over the eyes' whole sampling matrix. This integrative multiscale study will advance our current understanding of stereopsis from static image disparity comparison to a morphodynamic active sampling theory. It shows how photomechanical photoreceptor microsaccades enable Drosophila superresolution three-dimensional vision and proposes neural computations for accurately predicting these flies' depth-perception dynamics, limits, and visual behaviors.


Asunto(s)
Percepción de Profundidad , Drosophila , Animales , Ojo , Disparidad Visual , Visión Ocular
4.
J Anat ; 239(2): 536-543, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33686643

RESUMEN

Microscopic anatomical study of the hand requires difficult or destructive dissection techniques for each anatomical structure. Synchrotron phase-contrast imaging (sPCI) allows us to study precisely, at a microscopic resolution and in a nondestructive approach, the soft tissues and bone structures within a single 3D image. Therefore, we aimed to assess the capacity of sPCI to study the arterial anatomy of the hand and digits in human cadavers for anatomical purposes. A non-injected hand from an embalmed body was imaged using sPCI at 21-µm pixel size. The vascularization and innervation of the hands were virtually reconstructed at 84-µm resolution, and the medial neurovascular bundle of the third digit at 21 µm. The thinner-most distal structures were observed and reported. The diameter and thickness of the vascular and neural structures were defined on 2D computed tomographic axial projections, and using a granulometry method coupled to the 3D reconstructions. The vascularization of the hand was visible from the radial and ulnar arteries to the distal digital transverse anastomoses. The thinnest structure observed was the anastomotic arterial network around the proper palmar digital nerve. The latter emerged from the proper palmar digital artery and vascularized the nerve around its whole length and circumference. The perineural arterioles individualizable at this resolution had a diameter of 66-309 µm. In conclusion, sPCI allows both the arterial and neural anatomy of the hand to be studied at the same time, as well as the anatomical interactions between both networks. It facilitates the study of structures that have different sizes, diameters, thickness, and histological origin with great precision, in a noninvasive way, and using a single technique.


Asunto(s)
Mano/irrigación sanguínea , Anciano de 80 o más Años , Tomografía con Microscopio Electrónico , Femenino , Mano/diagnóstico por imagen , Humanos , Sincrotrones
5.
Proc Natl Acad Sci U S A ; 117(49): 30973-30979, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33199613

RESUMEN

Combining U-Pb ages with Lu-Hf data in zircon provides insights into the magmatic history of rocky planets. The Northwest Africa (NWA) 7034/7533 meteorites are samples of the southern highlands of Mars containing zircon with ages as old as 4476.3 ± 0.9 Ma, interpreted to reflect reworking of the primordial Martian crust by impacts. We extracted a statistically significant zircon population (n = 57) from NWA 7533 that defines a temporal record spanning 4.2 Gyr. Ancient zircons record ages from 4485.5 ± 2.2 Ma to 4331.0 ± 1.4 Ma, defining a bimodal distribution with groupings at 4474 ± 10 Ma and 4442 ± 17 Ma. We interpret these to represent intense bombardment episodes at the planet's surface, possibly triggered by the early migration of gas giant planets. The unradiogenic initial Hf-isotope composition of these zircons establishes that Mars's igneous activity prior to ∼4.3 Ga was limited to impact-related reworking of a chemically enriched, primordial crust. A group of younger detrital zircons record ages from 1548.0 ± 8.8 Ma to 299.5 ± 0.6 Ma. The only plausible sources for these grains are the temporally associated Elysium and Tharsis volcanic provinces that are the expressions of deep-seated mantle plumes. The chondritic-like Hf-isotope compositions of these zircons require the existence of a primitive and convecting mantle reservoir, indicating that Mars has been in a stagnant-lid tectonic regime for most of its history. Our results imply that zircon is ubiquitous on the Martian surface, providing a faithful record of the planet's magmatic history.

6.
Nat Commun ; 10(1): 4559, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31594921

RESUMEN

As organisms can form crystals only under ambient conditions, they demonstrate fascinating strategies to overcome this limitation. Recently, we reported a previously unknown biostrategy for toughening brittle calcite crystals, using coherently incorporated Mg-rich nanoprecipitates arranged in a layered manner in the lenses of a brittle star, Ophiocoma wendtii. Here we propose the mechanisms of formation of this functional hierarchical structure under conditions of ambient temperature and limited solid diffusion. We propose that formation proceeds via a spinodal decomposition of a liquid or gel-like magnesium amorphous calcium carbonate (Mg-ACC) precursor into Mg-rich nanoparticles and a Mg-depleted amorphous matrix. In a second step, crystallization of the decomposed amorphous precursor leads to the formation of high-Mg particle-rich layers. The model is supported by our experimental results in synthetic systems. These insights have significant implications for fundamental understanding of the role of Mg-ACC material transformation during crystallization and its subsequent stability.

7.
Methods Mol Biol ; 2014: 37-54, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31197785

RESUMEN

X-ray microtomography (µCT) is a three-dimensional imaging technique, which has, over the past decade, established itself as a go-to method for nondestructive visualization of plant tissue with submicrometer resolution. µCT is closely related to medical computed tomography, in that a measurement consists of acquiring a series of radiographs from different directions around the sample. Especially with synchrotron X-ray sources, these radiographs exhibit significant phase contrast. This greatly enhances soft tissue contrast, making it well suited for plant imaging. Tomographic reconstruction techniques are then employed to convert the stack of radiographs into a 3D volumetric image. Compared with the laboratory X-ray tube-based systems, synchrotron tomography beamlines also offer high throughput, with tens of samples scanned over the course of a typical 24-h beam time.Synchrotrons are typically operated as user facilities, with a staff member assisting users in aligning the beamline and all instrumentation-related matters. From the user's point of view, success of a synchrotron µCT experiment is often dependent on secure sample mounting, choice of appropriate beam parameters, and post-processing the data, i.e., extracting scientifically meaningful results from the 3D image. In this chapter, we review the issues to consider in preparation of a µCT experiment from the point of view of a phloem researcher, emphasizing those aspects which are directly under the user's control rather than technical specifics, which vary from one beamline to another.


Asunto(s)
Imagenología Tridimensional , Floema/citología , Floema/ultraestructura , Sincrotrones , Microtomografía por Rayos X , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional/métodos , Sincrotrones/instrumentación , Microtomografía por Rayos X/instrumentación , Microtomografía por Rayos X/métodos
8.
Invest Radiol ; 54(10): 617-626, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31033673

RESUMEN

OBJECTIVES: The aim of this study was to determine in vivo if brain inflammation leads to increased gadolinium (Gd) retention in brain tissue after repeated applications of Gd-based contrast agents (GBCAs). MATERIALS AND METHODS: Experimental autoimmune encephalomyelitis (EAE) was induced in female SJL/J mice (n = 6). Experimental autoimmune encephalomyelitis and healthy control mice (n = 4) received 2.5 mmol/kg Gd-DTPA over 10 days (8 injections, cumulated dose of 20 mmol/kg), starting at day 14 post immunization when EAE mice reached the maximal clinical disability. In a group of mice, T1-weighted 2-dimensional RARE images were acquired before the first GBCA injection and 1 day after the last injection. Mice were killed either 1 day or 10 days after the last Gd application. From each single animal, a brain hemisphere was used for Gd detection using inductively coupled plasma mass spectrometry, whereas the other hemisphere was processed for histology and synchrotron x-ray fluorescence spectroscopy (SR-XRF) analysis. RESULTS: Gadolinium deposition in inflamed brains was mapped by SR-XRF 1 day after the last Gd-DTPA injections, although only mild signal hyperintensity was found on unenhanced T1-weighted images. In addition, using inductively coupled plasma mass spectrometry, we detected and quantified Gd in both healthy and EAE brains up to 10 days after the last injections. However, EAE mouse brains showed higher levels of Gd (mean ± SD, 5.3 ± 1.8 µg/g; range, 4.45-8.03 µg/g) with respect to healthy controls (mean ± SD, 2.4 ± 0.6 µg/g; range, 1.8-3.2 µg/g). By means of micro-SR-XRF, we identified submicrometric Gd hotspots in all investigated samples containing up to 5893 µg Gd/g tissue. Nano-SR-XRF further indicated that Gd small hotspots had an average size of ~160 nm diameter and were located in areas of high inflammatory activity. CONCLUSIONS: After repeated administrations of Gd-DTPA, ongoing inflammation may facilitate the retention of Gd in the brain tissue. Thus, neuroinflammation should be considered as a risk factor in the recommendation on use of linear GBCA-enhanced MRI.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Medios de Contraste/farmacocinética , Gadolinio DTPA/farmacocinética , Animales , Medios de Contraste/administración & dosificación , Femenino , Gadolinio DTPA/administración & dosificación , Masculino , Ratones , Modelos Animales , Espectrometría de Fluorescencia , Espectrofotometría Atómica
9.
Materials (Basel) ; 10(8)2017 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-28773235

RESUMEN

This study investigates the impact of ice-templating conditions on the morphological features of composite polysaccharide aerogels in relation to their mechanical behavior and aims to get a better insight into the parameters governing these properties. We have prepared polysaccharide aerogels of guar galactomannan (GM) and tamarind seed xyloglucan (XG) by enzymatic oxidation with galactose oxidase (GaO) to form hydrogels, followed by conventional and unidirectional ice-templating (freezing) methods and lyophilization to form aerogels. Composite polysaccharide aerogels were prepared by incorporating nanofibrillated cellulose (NFC) into polysaccharide solutions prior to enzymatic oxidation and gel formation; such a cross linking technique enabled the homogeneous distribution of the NFC reinforcement into the gel matrix. We conducted phase-enhanced synchrotron X-ray microtomography (XMT) scans and visualized the internal microstructure of the aerogels in three-dimensional (3D) space. Volume-weighted pore-size and pore-wall thickness distributions were quantitatively measured and correlated to the aerogels' mechanical properties regarding ice-templating conditions. Pore-size distribution and orientation depended on the ice-templating methods and the NFC reinforcement that significantly determined the mechanical and shape-recovery behavior of the aerogels. The results obtained will guide the design of the microporous structure of polysaccharide aerogels with optimal morphology and mechanical behavior for life-sciences applications.

10.
Plant Physiol ; 172(2): 913-928, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27531441

RESUMEN

Phenolic stilbene glucosides (astringin, isorhapontin, and piceid) and their aglycons commonly accumulate in the phloem of Norway spruce (Picea abies). However, current knowledge about the localization and accumulation of stilbenes within plant tissues and cells remains limited. Here, we used an innovative combination of novel microanalytical techniques to evaluate stilbenes in a frozen-hydrated condition (i.e. in planta) and a freeze-dried condition across phloem tissues. Semiquantitative time-of-flight secondary ion-mass spectrometry imaging in planta revealed that stilbenes were localized in axial parenchyma cells. Quantitative gas chromatography analysis showed the highest stilbene content in the middle of collapsed phloem with decreases toward the outer phloem. The same trend was detected for soluble sugar and water contents. The specimen water content may affect stilbene composition; the glucoside-to-aglycon ratio decreased slightly with decreases in water content. Phloem chemistry was correlated with three-dimensional structures of phloem as analyzed by microtomography. The outer phloem was characterized by a high volume of empty parenchyma, reduced ray volume, and a large number of axial parenchyma with porous vacuolar contents. Increasing porosity from the inner to the outer phloem was related to decreasing compactness of stilbenes and possible secondary oxidation or polymerization. Our results indicate that aging-dependent changes in phloem may reduce cell functioning, which affects the capacity of the phloem to store water and sugar, and may reduce the defense potential of stilbenes in the axial parenchyma. Our results highlight the power of using a combination of techniques to evaluate tissue- and cell-level mechanisms involved in plant secondary metabolite formation and metabolism.


Asunto(s)
Glucósidos/análisis , Floema/química , Picea/química , Estilbenos/análisis , Liofilización , Cromatografía de Gases y Espectrometría de Masas , Glucósidos/metabolismo , Imagenología Tridimensional/métodos , Microscopía Electrónica de Rastreo/métodos , Floema/anatomía & histología , Floema/citología , Picea/anatomía & histología , Picea/citología , Espectrometría de Masa de Ion Secundario/métodos , Estilbenos/metabolismo , Agua/metabolismo , Microtomografía por Rayos X/métodos
11.
J Synchrotron Radiat ; 23(1): 344-52, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26698084

RESUMEN

Within the framework of the ESRF Phase I Upgrade Programme, a new state-of-the-art synchrotron beamline ID16B has been recently developed for hard X-ray nano-analysis. The construction of ID16B was driven by research areas with major scientific and societal impact such as nanotechnology, earth and environmental sciences, and bio-medical research. Based on a canted undulator source, this long beamline provides hard X-ray nanobeams optimized mainly for spectroscopic applications, including the combination of X-ray fluorescence, X-ray diffraction, X-ray excited optical luminescence, X-ray absorption spectroscopy and 2D/3D X-ray imaging techniques. Its end-station re-uses part of the apparatus of the earlier ID22 beamline, while improving and enlarging the spectroscopic capabilities: for example, the experimental arrangement offers improved lateral spatial resolution (∼50 nm), a larger and more flexible capability for in situ experiments, and monochromatic nanobeams tunable over a wider energy range which now includes the hard X-ray regime (5-70 keV). This paper describes the characteristics of this new facility, short-term technical developments and the first scientific results.

12.
Planta ; 242(3): 613-29, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26105650

RESUMEN

MAIN CONCLUSION: Phloem production and structural development were interlinked with seasonal variation in the primary and secondary metabolites of phloem. Novel microtechniques provided new perspectives on understanding phloem structure and chemistry. To gain new insights into phloem formation in Norway spruce (Picea abies), we monitored phloem cell production and seasonal variation in the primary and secondary metabolites of inner bark (non-structural carbohydrates and phenolic stilbene glucosides) during the 2012 growing season in southern and northern Finland. The structure of developing phloem was visualised in 3D by synchrotron X-ray microtomography. The chemical features of developing phloem tissues isolated by laser microdissection were analysed by chemical microanalysis. Within-year phloem formation was associated with seasonal changes in non-structural carbohydrates and phenolic extractive contents of inner bark. The onset of phloem cell production occurred in early and mid-May in southern and northern Finland, respectively. The maximal rate of phloem production and formation of a tangential band of axial phloem parenchyma occurred in mid-June, when total non-structural carbohydrates peaked (due to the high amount of starch). In contrast, soluble sugar content dropped during the most active growth period and increased in late summer and winter. The 3D visualisation showed that the new axial parenchyma clearly enlarged from June to August. Sub-cellular changes appeared to be associated with accumulation of stilbene glucosides and soluble sugars in the newest phloem. Stilbene glucosides also increased in inner bark during late summer and winter. Our findings may indicate that stilbene biosynthesis in older phloem predominantly occurs after the formation of the new band(s) of axial parenchyma. The complementary use of novel microtechniques provides new perspectives on the formation, structure, and chemistry of phloem.


Asunto(s)
Floema/crecimiento & desarrollo , Floema/metabolismo , Picea/crecimiento & desarrollo , Picea/metabolismo , Corteza de la Planta/crecimiento & desarrollo , Corteza de la Planta/metabolismo , Estaciones del Año
13.
Ultrasound Med Biol ; 41(8): 2259-65, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25922135

RESUMEN

There is no cure for osteoarthritis. Current drug delivery relies on systemic delivery or injections into the joint. Because articular cartilage (AC) degeneration can be local and drug exposure outside the lesion can cause adverse effects, localized drug delivery could permit new drug treatment strategies. We investigated whether intense megahertz ultrasound (frequency: 1.138 MHz, peak positive pressure: 2.7 MPa, Ispta: 5 W/cm(2), beam width: 5.7 mm at -6 dB, duty cycle: 5%, pulse repetition frequency: 285 Hz, mechanical index: 1.1) can deliver agents into AC without damaging it. Using ultrasound, we delivered a drug surrogate down to a depth corresponding to 53% depth of the AC thickness without causing histologically detectable damage to the AC. This may be important because early osteoarthritis typically exhibits histopathologic changes in the superficial AC. In conclusion, we identify intense megahertz ultrasound as a technique that potentially enables localized non-destructive delivery of osteoarthritis drugs or drug carriers into articular cartilage.


Asunto(s)
Cartílago Articular/química , Cartílago Articular/efectos de la radiación , Electroporación/métodos , Ondas de Choque de Alta Energía , Ácido Fosfotúngstico/química , Sonicación/métodos , Animales , Cartílago Articular/diagnóstico por imagen , Bovinos , Medios de Contraste , Ultrasonografía
14.
Plant Methods ; 9(1): 11, 2013 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-23566373

RESUMEN

BACKGROUND: The hydraulic conductivity of the stem is a major factor limiting the capability of trees to transport water from the soil to transpiring leaves. During drought conditions, the conducting capacity of xylem can be reduced by some conduits being filled with gas, i.e. embolized. In order to understand the dynamics of embolism formation and repair, considerable attention has been given to developing reliable and accurate methods for quantifying the phenomenon. In the past decade, non-destructive imaging of embolism formation in living plants has become possible. Magnetic resonance imaging has been used to visualize the distribution of water within the stem, but in most cases it is not possible to resolve individual cells. Recently, high-resolution synchrotron x-ray microtomography has been introduced as a tool to visualize the water contents of individual cells in vivo, providing unprecedented insight into the dynamics of embolism repair. We have investigated the potential of an x-ray tube -based microtomography setup to visualize and quantify xylem embolism and embolism repair in water-stressed young saplings and shoot tips of Silver and Curly birch (Betula pendula and B. pendula var. carelica). RESULTS: From the microtomography images, the water-filled versus gas-filled status of individual xylem conduits can be seen, and the proportion of stem cross-section that consists of embolized tissue can be calculated. Measuring the number of embolized vessels in the imaged area is a simple counting experiment. In the samples investigated, wood fibers were cavitated in a large proportion of the xylem cross-section shortly after watering of the plant was stopped, but the number of embolized vessels remained low several days into a drought period. Under conditions of low evaporative demand, also refilling of previously embolized conduits was observed. CONCLUSIONS: Desktop x-ray microtomography is shown to be an effective method for evaluating the water-filled versus embolized status of the stem xylem in a small living sapling. Due to its non-destructive nature, the risk of inducing embolisms during sampling is greatly reduced. Compared with synchrotron imaging beamlines, desktop microtomography offers easier accessibility, while maintaining sufficient resolution to visualize the water contents of individual cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...