Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 12(7)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35888178

RESUMEN

Atranorin (ATR) is a secondary metabolite of lichens. While previous studies investigated the effects of this substance predominantly in an in vitro environment, in our study we investigated the basic physicochemical properties, the binding affinity to human serum albumin (HSA), basic pharmacokinetics, and, mainly, on the systematic effects of ATR in vivo. Sporadic studies describe its effects during, predominantly, cancer. This project is original in terms of testing the efficacy of ATR on a healthy organism, where we can possibly attribute negative effects directly to ATR and not to the disease. For the experiment, 24 Sprague Dawley rats (Velaz, Únetice, Czech Republic) were used. The animals were divided into four groups. The first group (n = 6) included healthy males as control intact rats (♂INT) and the second group (n = 6) included healthy females as control intact rats (♀INT). Groups three and four (♂ATR/n = 6 and ♀ATR/n = 6) consisted of animals with daily administered ATR (10mg/kg body weight) in an ethanol-water solution per os for a one-month period. Our results demonstrate that ATR binds to HSA near the binding site TRP214 and acts on a systemic level. ATR caused mild anemia during the treatment. However, based on the levels of hepatic enzymes in the blood (ALT, ALP, or bilirubin levels), thiobarbituric acid reactive substances (TBARS), or liver histology, no impact on liver was recorded. Significantly increased creatinine and lactate dehydrogenase levels together with increased defecation activity during behavioral testing may indicate the anabolic effect of ATR in skeletal muscles. Interestingly, ATR changed some forms of behavior. ATR at a dose of 10 mg/kg body weight is non-toxic and, therefore, could be used in further research.

2.
J Photochem Photobiol B ; 206: 111855, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32220773

RESUMEN

Hypericin (HY) is a naphthodianthrone that naturally occurs in Hypericum perforatum L. It is a promising photosensitiser used in photodynamic therapy for and diagnosis of oncological diseases. However, its hydrophobic character is an obstacle that has prevented its efficient use. The commonly used solvent, dimethyl sulfoxide (DMSO), is a controversial constituent of HY formulations and its use has been rejected by many researchers studying HY both in vitro and in vivo. In this study, we propose the utilisation of hydrotropy to solubilise HY in an aqueous environment. Cromolyn (DSCG) is a non-toxic, well-tolerated, antiallergic drug that has been employed in clinical practice since 1970, and in aqueous solution it acts as a hydrotrope. At a molecular ratio of 1:12,000 HY to DSCG, the compound is able to solubilise HY in aqueous environment. In an HT-29 cell suspension, DSCG (1.8 mmol L-1) considerably enhances the interaction between HY (150 nmol L-1) and HT-29 cells, which leads to an HY fluorescence emission increase with a half-time approximately 2 min compared to 29 min for samples that lack DSCG. Studies using HT-29 adenocarcinoma cells showed that DSCG at a given concentration significantly improved accumulation of HY within cells compared to DMSO (p < 0.05) despite the relative resistance of the HT-29 cell line to HY-PDT. Though no significant difference between total reactive oxygen species production was observed for photoactivated HY dissolved in DMSO and DSCG, significant singlet oxygen generation by photoactivated HY dissolved in a DSCG-containing water solution at the studied molecular ratio was confirmed. We also clarified that DSCG does not act as a scavenger of ABTS and galvinoxyl free radicals. The results from an MTT assay showed that DSCG also significantly enhanced the cytotoxicity of photoactivated HY compared to DMSO (p < 0.05). This study has demonstrated the ability of DSCG to act as a solvent of HY and enhance the effectiveness of HY-PDT compared to the commonly used organic solvent, DMSO.

3.
Int J Mol Sci ; 20(7)2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30987191

RESUMEN

Cannabinoids (CBs) from Cannabis sativa provide relief for tumor-associated symptoms (including nausea, anorexia, and neuropathic pain) in the palliative treatment of cancer patients. Additionally, they may decelerate tumor progression in breast cancer patients. Indeed, the psychoactive delta-9-tetrahydrocannabinol (THC), non-psychoactive cannabidiol (CBD) and other CBs inhibited disease progression in breast cancer models. The effects of CBs on signaling pathways in cancer cells are conferred via G-protein coupled CB-receptors (CB-Rs), CB1-R and CB2-R, but also via other receptors, and in a receptor-independent way. THC is a partial agonist for CB1-R and CB2-R; CBD is an inverse agonist for both. In breast cancer, CB1-R expression is moderate, but CB2-R expression is high, which is related to tumor aggressiveness. CBs block cell cycle progression and cell growth and induce cancer cell apoptosis by inhibiting constitutive active pro-oncogenic signaling pathways, such as the extracellular-signal-regulated kinase pathway. They reduce angiogenesis and tumor metastasis in animal breast cancer models. CBs are not only active against estrogen receptor-positive, but also against estrogen-resistant breast cancer cells. In human epidermal growth factor receptor 2-positive and triple-negative breast cancer cells, blocking protein kinase B- and cyclooxygenase-2 signaling via CB2-R prevents tumor progression and metastasis. Furthermore, selective estrogen receptor modulators (SERMs), including tamoxifen, bind to CB-Rs; this process may contribute to the growth inhibitory effect of SERMs in cancer cells lacking the estrogen receptor. In summary, CBs are already administered to breast cancer patients at advanced stages of the disease, but they might also be effective at earlier stages to decelerate tumor progression.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Cannabinoides/uso terapéutico , Animales , Cannabinoides/química , Estrógenos/metabolismo , Femenino , Humanos , Receptores de Cannabinoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...