Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mycologia ; 114(6): 934-946, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36166197

RESUMEN

Kickxellomycotina encompasses two fungal groups: a saprobic group in excrement and soil and an arthropod gut-inhabiting group. The evolutionary transition between these two lifestyles is unclear due to the lack of knowledge on intermediate forms and lifestyles. Here, we describe a new species, Unguispora rhaphidophoridarum, that was isolated from the excrement of cave crickets (Rhaphidophoridae) in Japan. This species has a novel lifestyle that is intermediate between the saprobic and gut-inhabiting groups. The new genus Unguispora is a member of the Kickxellales and characterized by the sterile appendages born on the sporocladium and by the claw-like ornamentation of the sporangiole. Phylogenetic analysis based on 18S and 28S nuclear ribosomal DNA showed that this fungus is distinct from all known kickxellalean genera and is sister to Linderina. The sporangiospore of the new species germinated only in anaerobiosis and grew in a yeast-like form. The yeast-like cells, defined as "secondary spores," germinated into hyphae in aerobiosis. In the alimentary tract of cave crickets, the sporangiola are attached to the proventriculus (foregut) by the claw-like ornamentation and multiplicate in the same yeast-like form as under culture. We introduce a new term, "amphibious fungi," to describe fungi that have two life stages, one outside and the other inside the host gut, like U. rhaphidophoridarum. The discovery of an amphibious fungus in Kickxellales, which was formerly considered to be only saprobic, suggests that Kickxellomycotina has evolved in association with the animal gut.


Asunto(s)
Hongos , Saccharomyces cerevisiae , Animales , Filogenia , Saccharomyces cerevisiae/genética , ADN Ribosómico/genética , Esporas Fúngicas , ADN de Hongos/genética , Análisis de Secuencia de ADN
2.
Mycoscience ; 63(4): 176-180, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37090472

RESUMEN

Myconymphaea yatsukahoi is a fungus that has only been isolated once from a forest in the Sugadaira Research Station, Nagano, Japan. Over 20 y have passed since its first discovery but since then it has not been rediscovered. Here, we re-isolated M. yatsukahoi from the type locality and another location, Tambara Moor, Gunma, Japan. Sporophores of this species were detected by direct field observation in Sugadaira and by induction from soil from Tambara. We attempted to narrow down isolation sources of this species by investigating the excrements of Lithobiomorpha and Scolopendromorpha centipedes, which are frequently found in the two locations where the species is distributed. In both locations, we found M. yatsukahoi in the excrements of Lithobiomorpha but not Scolopendromorpha. Myconymphaea yatsukahoi appears to be a coprophilous fungus and the excrements of the predators living in soil may be promising isolation sources for understanding the hidden diversity of kickxellalean fungi.

3.
Mol Nutr Food Res ; 65(15): e2100226, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34110671

RESUMEN

SCOPE: Hyperoxaluria is a major cause of kidney stone disease. Around half of the oxalate in mammals is supplied from the diet and the other half is endogenously synthesized from glyoxylate. Reduction of hepatic glycolate oxidase (GO) activity is one approach to reduce endogenous production of oxalate. However, there are currently few effective dietary approaches to reduce hepatic GO activity. METHODS AND RESULTS: In the present study, it is investigated whether restriction of dietary vitamin B2 (VB2) can reduce hepatic GO activity and oxalate excretion in mice with hyperoxaluria induce by hydroxyproline (Hyp) or obesity. It is found that VB2 restriction significantly reduces hepatic GO activity in both the Hyp- and obesity-induced model of hyperoxaluria in mice. However, VB2 restriction reduces urinary oxalate excretion only in the Hyp-treated mice and not the obese mice. This difference could be due to the contribution of endogenous oxalate production that manifests as increased hepatic GO activity in Hyp-treated mice but not obese mice. CONCLUSION: Together these results suggest that VB2 restriction could be a new dietary approach to improve hyperoxaluria when endogenous production of oxalate is increased.


Asunto(s)
Hiperoxaluria/dietoterapia , Hiperoxaluria/etiología , Riñón/patología , Obesidad/complicaciones , Riboflavina , Oxidorreductasas de Alcohol/metabolismo , Animales , Creatinina/orina , Dieta , Hidroxiprolina/toxicidad , Masculino , Ratones Endogámicos C57BL , Ratones Obesos , Oxalatos/orina , Deficiencia de Riboflavina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...