Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36834948

RESUMEN

Cardiovascular complications are seen among human immunodeficiency virus (HIV)-positive individuals, who now survive longer due to successful antiretroviral therapies. Pulmonary arterial hypertension (PAH) is a fatal disease characterized by increased blood pressure in the lung circulation. The prevalence of PAH in the HIV-positive population is dramatically higher than that in the general population. While HIV-1 Group M Subtype B is the most prevalent subtype in western countries, the majority of HIV-1 infections in eastern Africa and former Soviet Union countries are caused by Subtype A. Research on vascular complications in the HIV-positive population in the context of subtype differences, however, has not been rigorous. Much of the research on HIV has focused on Subtype B, and information on the mechanisms of Subtype A is nonexistent. The lack of such knowledge results in health disparities in the development of therapeutic strategies to prevent/treat HIV complications. The present study examined the effects of HIV-1 gp120 of Subtypes A and B on human pulmonary artery endothelial cells by performing protein arrays. We found that the gene expression changes caused by gp120s of Subtypes A and B are different. Subtype A is a more potent downregulator of perostasin, matrix metalloproteinase-2, and ErbB than Subtype B, while Subtype B is more effective in downregulating monocyte chemotactic protein-2 (MCP-2), MCP-3, and thymus- and activation-regulated chemokine proteins. This is the first report of gp120 proteins affecting host cells in an HIV subtype-specific manner, opening up the possibility that complications occur differently in HIV patients throughout the world.


Asunto(s)
Células Endoteliales , Expresión Génica , Proteína gp120 de Envoltorio del VIH , Infecciones por VIH , VIH-1 , Humanos , Células Endoteliales/metabolismo , Hipertensión Pulmonar Primaria Familiar/virología , Glicoproteínas/metabolismo , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/genética , VIH-1/patogenicidad , Metaloproteinasa 2 de la Matriz/metabolismo
2.
bioRxiv ; 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36711442

RESUMEN

Cardiovascular complications are seen among human immunodeficiency virus (HIV)-positive individuals who can now survive longer due to successful antiretroviral therapies. Among them, pulmonary arterial hypertension (PAH) is a fatal disease characterized by increased blood pressure in the lung circulation due to vasoconstriction and vascular wall remodeling, resulting in the overworking of the heart. The prevalence of PAH in the HIVpositive population is dramatically higher than that in the general population. While HIV-1 Group M Subtype B is the most prevalent subtype in western countries, the majority of HIV-1 infections in eastern Africa and former Soviet Union countries are caused by Subtype A. Research on the mechanism of vascular complications in the HIV-positive population, especially in the context of subtype differences, however, has not been rigorous. Much of the research on HIV has focused on Subtype B and information on the molecular mechanisms of Subtype A is non-existent. The lack of such knowledge results in health disparities in the development of therapeutic strategies to prevent/treat HIV complications. The present study examined the effects of HIV-1 viral fusion protein gp120 of Subtypes A and B on cultured human pulmonary artery endothelial cells by performing protein arrays. We found that the gene expression changes caused by the gp120s of Subtypes A and B are different. Specifically, Subtype A is a more potent downregulator of perostasin, matrix metalloproteinase-2 (MMP-2), and ErbB/Her3 than Subtype B, while Subtype B is more effective in downregulating monocyte chemotactic protein-2 (MCP-2/CCL8), MCP-3 (CCL7), and thymus- and activation-regulated chemokine (TARC/CCL17) proteins. This is the first report of gp120 proteins affecting host cells in an HIV subtype-specific manner, opening up the possibility that vascular complications may occur differently in HIV patients throughout the world.

3.
Cell Signal ; 52: 147-154, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30213686

RESUMEN

Extracellular signal-regulated kinase (ERK), also known as classical mitogen-activated protein kinase, plays critical roles in cell regulation. ERK is activated through phosphorylation by a cascade of protein kinases including MEK. Various ligands activate the MEK/ERK pathway through receptor-dependent cell signaling. In cultured cells, many ligands such as growth factors, hormones, cytokines and vasoactive peptides elicit transient activation of MEK/ERK, often peaking at ~10 min after the cell treatment. Here, we describe a novel biological event, in which ligand-mediated cell signaling results in the dephosphorylation of MEK/ERK. Neuromedin N and neurotensin, peptides derived from the same precursor polypeptide, elicit cell signaling through the neurotensin receptors. In cultured human pulmonary artery smooth muscle cells (PASMCs), but not in human pulmonary artery endothelial cells (PAECs), we found that both neuromedin N and neurotensin promoted the dephosphorylation of ERK and MEK. Human PASMCs were found to express neurotensin receptor (NTR)-1, -2 and -3, while human PAECs only express NTR3. Neuromedin N-mediated dephosphorylation was suppressed by small chemical inhibitors of protein phosphatase 1/2A and peptidyl-prolyl isomerase. Transmission electron microscopy showed the formation of endocytic vesicles in response to neuromedin N treatment, and dephosphorylation did not occur when sorting nexin 9, a critical regulator of the endocytic vesicle formation, was knocked down. We conclude that neuromedin N and neurotensin elicit a unique dephosphorylation signaling in the MEK/ERK pathway that is regulated by endocytosis. Considering the pathophysiological importance of the MEK/ERK pathway, this discovery of the dephosphorylation mechanism should advance the field of cell signaling.


Asunto(s)
Células Endoteliales/metabolismo , Miocitos del Músculo Liso/metabolismo , Neurotensina/fisiología , Fragmentos de Péptidos/fisiología , Arteria Pulmonar/metabolismo , Células Endoteliales/citología , Humanos , Péptidos y Proteínas de Señalización Intracelular/farmacología , Sistema de Señalización de MAP Quinasas , Miocitos del Músculo Liso/citología , Proteínas Nucleares , Isomerasa de Peptidilprolil/antagonistas & inhibidores , Nexinas de Proteasas/metabolismo , Arteria Pulmonar/citología , Proteínas de Unión al ARN , Receptores de Neurotensina/metabolismo
4.
Antioxidants (Basel) ; 7(8)2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30096794

RESUMEN

Right-sided heart failure is the major cause of death among patients who suffer from various forms of pulmonary hypertension and congenital heart disease. The right ventricle (RV) and left ventricle (LV) originate from different progenitor cells and function against very different blood pressures. However, differences between the RV and LV formed after birth have not been well defined. Work from our laboratory and others has accumulated evidence that redox signaling, oxidative stress and antioxidant regulation are important components that define the RV/LV differences. The present article summarizes the progress in understanding the roles of redox biology in the RV chamber-specificity. Understanding the mechanisms of RV/LV differences should help develop selective therapeutic strategies to help patients who are susceptible to and suffering from right-sided heart failure. Modulations of redox biology may provide effective therapeutic avenues for these conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...