Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Opin Cell Biol ; 89: 102394, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38963953

RESUMEN

This review examines the dynamic mechanisms underlying cellular signaling, communication, and adhesion via transient, nano-scale, liquid-like molecular assemblies on the plasma membrane (PM). Traditional views posit that stable, solid-like molecular complexes perform these functions. However, advanced imaging reveals that many signaling and scaffolding proteins only briefly reside in these molecular complexes and that micron-scale protein assemblies on the PM, including cell adhesion structures and synapses, are likely made of archipelagoes of nanoliquid protein islands. Borrowing the concept of liquid-liquid phase separation to form micron-scale biocondensates, we propose that these nano-scale oligomers and assemblies are enabled by multiple weak but specific molecular interactions often involving intrinsically disordered regions. The signals from individual nanoliquid signaling complexes would occur as pulses. Single-molecule imaging emerges as a crucial technique for characterizing these transient nanoliquid assemblies on the PM, suggesting a shift toward a model where the fluidity of interactions underpins signal regulation and integration.

2.
J Am Chem Soc ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963258

RESUMEN

Glycans cover the cell surface to form the glycocalyx, which governs a myriad of biological phenomena. However, understanding and regulating glycan functions is extremely challenging due to the large number of heterogeneous glycans that engage in intricate interaction networks with diverse biomolecules. Glycocalyx-editing techniques offer potent tools to probe their functions. In this study, we devised a HaloTag-based technique for glycan manipulation, which enables the introduction of chemically synthesized glycans onto a specific protein (protein of interest, POI) and concurrently incorporates fluorescent units to attach homogeneous, well-defined glycans to the fluorescence-labeled POIs. Leveraging this HaloTag-based glycan-display system, we investigated the influence of the interactions between Gal-3 and various N-glycans on protein dynamics. Our analyses revealed that glycosylation modulates the lateral diffusion of the membrane proteins in a structure-dependent manner through interaction with Gal-3, particularly in the context of the Gal-3-induced formation of the glycan network (galectin lattice). Furthermore, N-glycan attachment was also revealed to have a significant impact on the extracellular vesicle-loading of membrane proteins. Notably, our POI-specific glycan introduction does not disrupt intact glycan structures, thereby enabling a functional analysis of glycans in the presence of native glycan networks. This approach complements conventional glycan-editing methods and provides a means for uncovering the molecular underpinnings of glycan functions on the cell surface.

3.
Nat Commun ; 15(1): 4514, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802491

RESUMEN

Knowledge on the distribution and dynamics of glycosylation enzymes in the Golgi is essential for better understanding this modification. Here, using a combination of CRISPR/Cas9 knockin technology and super-resolution microscopy, we show that the Golgi complex is assembled by a number of small 'Golgi units' that have 1-3 µm in diameter. Each Golgi unit contains small domains of glycosylation enzymes which we call 'zones'. The zones of N- and O-glycosylation enzymes are colocalised. However, they are less colocalised with the zones of a glycosaminoglycan synthesizing enzyme. Golgi units change shapes dynamically and the zones of glycosylation enzymes rapidly move near the rim of the unit. Photobleaching analysis indicates that a glycosaminoglycan synthesizing enzyme moves between units. Depletion of giantin dissociates units and prevents the movement of glycosaminoglycan synthesizing enzymes, which leads to insufficient glycosaminoglycan synthesis. Thus, we show the structure-function relationship of the Golgi and its implications in human pathogenesis.


Asunto(s)
Glicosaminoglicanos , Aparato de Golgi , Aparato de Golgi/metabolismo , Glicosilación , Humanos , Glicosaminoglicanos/metabolismo , Células HeLa , Sistemas CRISPR-Cas , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Matriz de Golgi
4.
Nat Commun ; 15(1): 220, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212328

RESUMEN

Stimulator of interferon genes (STING) is critical for the type I interferon response to pathogen- or self-derived DNA in the cytosol. STING may function as a scaffold to activate TANK-binding kinase 1 (TBK1), but direct cellular evidence remains lacking. Here we show, using single-molecule imaging of STING with enhanced time resolutions down to 5 ms, that STING becomes clustered at the trans-Golgi network (about 20 STING molecules per cluster). The clustering requires STING palmitoylation and the Golgi lipid order defined by cholesterol. Single-molecule imaging of TBK1 reveals that STING clustering enhances the association with TBK1. We thus provide quantitative proof-of-principle for the signaling STING scaffold, reveal the mechanistic role of STING palmitoylation in the STING activation, and resolve the long-standing question of the requirement of STING translocation for triggering the innate immune signaling.


Asunto(s)
Lipoilación , Red trans-Golgi , Red trans-Golgi/metabolismo , Microscopía , Imagen Individual de Molécula , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Colesterol , Análisis por Conglomerados , Inmunidad Innata
5.
J Cell Biol ; 222(8)2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37278763

RESUMEN

The spatial resolution of fluorescence microscopy has recently been greatly enhanced. However, improvements in temporal resolution have been limited, despite their importance for examining living cells. Here, we developed an ultrafast camera system that enables the highest time resolutions in single fluorescent-molecule imaging to date, which were photon-limited by fluorophore photophysics: 33 and 100 µs with single-molecule localization precisions of 34 and 20 nm, respectively, for Cy3, the optimal fluorophore we identified. Using theoretical frameworks developed for the analysis of single-molecule trajectories in the plasma membrane (PM), this camera successfully detected fast hop diffusion of membrane molecules in the PM, previously detectable only in the apical PM using less preferable 40-nm gold probes, thus helping to elucidate the principles governing the PM organization and molecular dynamics. Furthermore, as described in the companion paper, this camera allows simultaneous data acquisitions for PALM/dSTORM at as fast as 1 kHz, with 29/19 nm localization precisions in the 640 × 640 pixel view-field.


Asunto(s)
Colorantes Fluorescentes , Nanotecnología , Membrana Celular , Difusión , Microscopía Fluorescente/métodos , Imagen Individual de Molécula , Biología Celular
6.
J Cell Biol ; 222(8)2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37278764

RESUMEN

Using our newly developed ultrafast camera described in the companion paper, we reduced the data acquisition periods required for photoactivation/photoconversion localization microscopy (PALM, using mEos3.2) and direct stochastic reconstruction microscopy (dSTORM, using HMSiR) by a factor of ≈30 compared with standard methods, for much greater view-fields, with localization precisions of 29 and 19 nm, respectively, thus opening up previously inaccessible spatiotemporal scales to cell biology research. Simultaneous two-color PALM-dSTORM and PALM-ultrafast (10 kHz) single fluorescent-molecule imaging-tracking has been realized. They revealed the dynamic nanoorganization of the focal adhesion (FA), leading to the compartmentalized archipelago FA model, consisting of FA-protein islands with broad diversities in size (13-100 nm; mean island diameter ≈30 nm), protein copy numbers, compositions, and stoichiometries, which dot the partitioned fluid membrane (74-nm compartments in the FA vs. 109-nm compartments outside the FA). Integrins are recruited to these islands by hop diffusion. The FA-protein islands form loose ≈320 nm clusters and function as units for recruiting FA proteins.


Asunto(s)
Adhesiones Focales , Simulación de Dinámica Molecular , Difusión , Adhesiones Focales/metabolismo , Integrinas/metabolismo , Imagen Individual de Molécula , Biología Celular
7.
Glycoconj J ; 40(3): 305-314, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37133616

RESUMEN

Glycosphingolipids, including gangliosides, are representative lipid raft markers that perform a variety of physiological roles in cell membranes. However, studies aimed at revealing their dynamic behavior in living cells are rare, mostly due to a lack of suitable fluorescent probes. Recently, the ganglio-series, lacto-series, and globo-series glycosphingolipid probes, which mimic the behavior of the parental molecules in terms of partitioning to the raft fraction, were developed by conjugating hydrophilic dyes to the terminal glycans of glycosphingolipids using state-of-art entirely chemical-based synthetic techniques. High-speed, single-molecule observation of these fluorescent probes revealed that gangliosides were scarcely trapped in small domains (100 nm in diameter) for more than 5 ms in steady-state cells, suggesting that rafts including gangliosides were always moving and very small. Furthermore, dual-color, single-molecule observations clearly showed that homodimers and clusters of GPI-anchored proteins were stabilized by transiently recruiting sphingolipids, including gangliosides, to form homodimer rafts and the cluster rafts, respectively. In this review, we briefly summarize recent studies, the development of a variety of glycosphingolipid probes as well as the identification of the raft structures including gangliosides in living cells by single-molecule imaging.


Asunto(s)
Colorantes Fluorescentes , Glicoesfingolípidos , Glicoesfingolípidos/metabolismo , Colorantes Fluorescentes/química , Imagen Individual de Molécula , Gangliósidos/metabolismo , Membrana Celular/metabolismo , Microdominios de Membrana/metabolismo
8.
Mol Biol Cell ; 34(5)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37039596

RESUMEN

Two very polarized views exist for understanding the cellular plasma membrane (PM). For some, it is the simple fluid described by the original Singer-Nicolson fluid mosaic model. For others, due to the presence of thousands of molecular species that extensively interact with each other, the PM forms various clusters and domains that are constantly changing and therefore, no simple rules exist that can explain the structure and molecular dynamics of the PM. In this article, we propose that viewing the PM from its two predominant components, cholesterol and actin filaments, provides an excellent and transparent perspective of PM organization, dynamics, and mechanisms for its functions. We focus on the actin-induced membrane compartmentalization and lipid raft domains coexisting in the PM and how they interact with each other to perform PM functions. This view provides an important update of the fluid mosaic model.


Asunto(s)
Actinas , Canto , Actinas/metabolismo , Aniversarios y Eventos Especiales , Membrana Celular/metabolismo , Colesterol/metabolismo
9.
iScience ; 26(1): 105747, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36590176

RESUMEN

Small extracellular vesicles (sEVs) secreted from cancer cells play pivotal roles in cancer metastasis and malignancy by transferring biomolecules and conditioning future metastatic sites. Studies have elucidated structures and functions of glycans on sEVs; however, whether sEVs remodel glycans in recipient cells remains poorly understood. Here, we examined the enzyme activity of glycosyltransferases for complex N-glycan biosynthesis in cancer-derived sEVs and discovered that cancer-related glycosyltransferase, N-acetylglucosaminyltransferase-V (GnT-V, a.k.a. MGAT5), is selectively enriched in sEVs among various glycosyltransferases. GnT-V in sEVs is a cleaved form, and cleavage by SPPL3 protease is necessary for loading GnT-V in sEVs. Fractionation experiments and single-particle imaging further revealed that GnT-V was enriched in non-exosomal sEVs. Strikingly, we found that enzymatically active GnT-V in sEVs was transferred to recipient cells and the N-glycan structures of recipient cells were remodeled to express GnT-V-produced glycans. Our results suggest GnT-V-enriched sEVs' role in glycan remodeling in cancer metastasis.

10.
Glycoconj J ; 40(2): 247-257, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36701103

RESUMEN

Ganglioside GD2 is associated with the proliferation and migration of breast cancer cells. However, the precise role of GD2 is unclear because its tendency to form dynamic and transient domains in cell plasma membranes (PMs), called lipid rafts, makes it difficult to observe. Previously, we developed fluorescent analogs of gangliosides (e.g., GM3 and GM1), which enabled the observation of lipid raft formation for the first time using single-molecule imaging. In this report, we describe the first chemical synthesis of a fluorescent ganglioside, GD2. A biophysical analysis of the synthesized analog revealed its raft-philic character, suggesting its potential to aid single-molecule imaging-based investigations into raft-associated interactions.


Asunto(s)
Gangliósidos , Imagen Individual de Molécula , Gangliósidos/metabolismo , Membrana Celular/metabolismo , Microdominios de Membrana/metabolismo
11.
Nanoscale ; 15(3): 1024-1031, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36444534

RESUMEN

The artificial construction of multicomponent supramolecular materials comprising plural supramolecular architectures that are assembled orthogonally from their constituent molecules has attracted growing attention. Here, we describe the design and development of multicomponent supramolecular materials by combining peptide-based self-assembled fibrous nanostructures with globular DNA nanoflowers constructed by the rolling circle amplification reaction. The orthogonally constructed architectures were dissected by fluorescence imaging using the selective fluorescence staining procedures adapted to this study. The present, unique hybrid materials developed by taking advantage of each supramolecular architecture based on their peptide and DNA functions may offer distinct opportunities to explore their bioapplications as a soft matrix.


Asunto(s)
Nanofibras , Nanoestructuras , Nanofibras/química , Nanoestructuras/química , Péptidos/química , ADN/química , Imagen Óptica
12.
Methods Mol Biol ; 2613: 215-227, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36587082

RESUMEN

Gangliosides play a variety of physiological roles and are one of the most important lipid raft constituents. However, their dynamic behaviors have scarcely been investigated in living cells because of the lack of fluorescent probes that behave like their parental molecules. Recently, fluorescent ganglioside probes that mimic native ganglioside behaviors have been developed. In this chapter, I discuss the recent advances in research related to the lateral localization and dynamic behaviors of gangliosides in the plasma membranes of living cells.


Asunto(s)
Gangliósidos , Imagen Individual de Molécula , Gangliósidos/metabolismo , Membrana Celular/metabolismo , Membranas/metabolismo , Nanotecnología
13.
Biochim Biophys Acta Biomembr ; 1865(2): 184093, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36423676

RESUMEN

This year celebrates the 50th anniversary of the Singer-Nicolson fluid mosaic model for biological membranes. The next level of sophistication we have achieved for understanding plasma membrane (PM) structures, dynamics, and functions during these 50 years includes the PM interactions with cortical actin filaments and the partial demixing of membrane constituent molecules in the PM, particularly raft domains. Here, first, we summarize our current knowledge of these two structures and emphasize that they are interrelated. Second, we review the structure, molecular dynamics, and function of raft domains, with main focuses on raftophilic glycosylphosphatidylinositol-anchored proteins (GPI-APs) and their signal transduction mechanisms. We pay special attention to the results obtained by single-molecule imaging techniques and other advanced microscopy methods. We also clarify the limitations of present optical microscopy methods for visualizing raft domains, but emphasize that single-molecule imaging techniques can "detect" raft domains associated with molecules of interest in the PM.


Asunto(s)
Actinas , Canto , Actinas/metabolismo , Microscopía , Microdominios de Membrana/química , Membrana Celular/metabolismo
14.
Langmuir ; 38(48): 14695-14703, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36421004

RESUMEN

Exosomes are small extracellular vesicles (sEVs) involved in distal cell-cell communication and cancer migration by transferring functional cargo molecules. Membrane domains similar to lipid rafts are assumed to occur in exosome membranes and are involved in interactions with target cells. However, the bilayer membrane properties of these small vesicles have not been fully investigated. Therefore, we examined the fluidity, lateral domain separation, and transbilayer asymmetry of exosome membranes using fluorescence spectroscopy. Although there were some differences between the exosomes, TMA-DPH anisotropy showing moderate lipid chain order indicated that ordered phases comprised a significant proportion of exosome membranes. Selective TEMPO quenching of the TMA-DPH fluorescence in the liquid-disordered phase indicated that 40-50% of the exosome membrane area belonged to the ordered phase based on a phase-separated model. Furthermore, NBD-PC in the outer leaflet showed longer fluorescence lifetimes than those in the inner leaflets. Therefore, the exosome membranes maintained transbilayer asymmetry with a topology similar to that of the plasma membranes. In addition, the lateral and transbilayer orders of exosome membranes obtained from different cell lines varied, probably depending on the different membrane lipid components and compositions partially derived from donor cells. As these higher membrane orders and asymmetric topologies are similar to those of cell membranes with lipid rafts, raft-like functional domains are possibly enriched on exosome membranes. These domains likely play key roles in the biological functions and cellular uptake of exosomes by facilitating selective membrane interactions with target organs.


Asunto(s)
Exosomas , Fluidez de la Membrana , Espectrometría de Fluorescencia , Membrana Dobles de Lípidos/química , Exosomas/metabolismo , Membrana Celular/metabolismo
15.
RSC Chem Biol ; 3(7): 868-885, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35866169

RESUMEN

Gangliosides are a family of sialic-acid-containing glycosphingolipids that form dynamic domains (lipid rafts) with proteins in cell plasma membranes (PMs), and are involved in various biological processes. The dynamic behavior of gangliosides can be elucidated by analyzing fluorescently-labeled molecules with a powerful technique known as single-molecule imaging. We previously developed fluorescent probes for ganglioside subfamilies such as the ganglio- and globo-series, and investigated their behavior in cell PMs. This study targeted a lacto-series ganglioside, sialyl-lactotetraosylceramide, whose behavior in PMs has not yet been investigated. We applied a recently reported method for the direct sialylation of oligosaccharyl lipid acceptors to synthesize the fluorescent ganglioside probes. The glycolipid acceptor exhibited high solubility in organic solvents owing to the installation of a large quantity of p-tert-butylbenzoyl protecting groups, which ensured direct α-sialylation at relatively low temperatures. Biophysical evaluation of the synthesized probe determined that it behaved as a raft molecule in cell PMs. Furthermore, single-molecule imaging revealed cis interactions between the lacto-series ganglioside and a major raft molecule (GPI-anchored protein CD59). Moreover, the fluorescent non-sialylated (asialyl) lactotetraosylceramide behaved similarly to its sialyl counterpart.

16.
Chem Asian J ; 17(10): e202200142, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35338588

RESUMEN

Here, we describe the design and synthesis of a new reduction-cleavable spacer (RCS) based on a nitrobenzene scaffold for constructing reduction-responsive oligonucleotides according to standard phosphoramidite chemistry. In addition, we demonstrate that the introduction of the RCS in the middle of an oligonucleotide (30 nt) enables the construction of a self-assembled microsphere capable of exhibiting a reduction-responsive disassembly.


Asunto(s)
ADN , Oligonucleótidos , Microesferas , Nitrobencenos
17.
Chemistry ; 28(8): e202104421, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-34984747

RESUMEN

Aqueous self-assembly of short peptides has attracted growing attention for the construction of supramolecular materials for various bioapplications. Herein, we describe how the thermolysin-assisted biocatalytic construction of a dipeptide hydrazide from an N-protected amino acid and an amino acid hydrazide leads to the formation of thermally stable supramolecular hydrogels. In addition, we demonstrate the post-assembly modification of the supramolecular architectures constructed in situ tethering hydrazide groups as a chemical handle by means of fluorescence imaging.


Asunto(s)
Dipéptidos , Nanoestructuras , Hidrazinas , Hidrogeles , Péptidos
18.
Adv Biol (Weinh) ; 5(12): e2100636, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34761565

RESUMEN

Dopamine D2 receptor (D2R), a G-protein-coupled receptor (GPCR), plays critical roles in neural functions and represents the target for a wide variety of drugs used to treat neurological diseases. However, its fundamental physicochemical properties, such as dimerization and affinity to different lipid environments, remain unknown. Here, reconstitution and characterization of D2R in a supported model membrane in nanometric confinement are reported. D2R is expressed in Chinese hamster ovary (CHO) cells and transferred into the supported model membrane as cell membrane blebs. D2R molecules are reconstituted with an elevated density in the cleft between the substrate and poly(dimethylsiloxane) (PDMS) elastomer. Reconstituted D2R retains the physiological functions, as evaluated from its binding to an antagonist and dimerization lifetime. The transient dimer formation of D2R, similar to the live cell, suggests that it is an innate property that does not depend on the cellular structures such as actin filaments. Although the mechanism of this unique reconstitution process is currently not fully understood, the finding points to a new possibility of using a nanometric space (<100 nm thick) as a platform for reconstituting and studying membrane proteins under the quasi-physiological conditions, which are difficult to be created by other methods.


Asunto(s)
Receptores de Dopamina D2 , Animales , Células CHO , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Dimerización , Receptores de Dopamina D2/metabolismo
19.
J Cell Biol ; 219(12)2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33053147

RESUMEN

Using single-molecule imaging with enhanced time resolutions down to 5 ms, we found that CD59 cluster rafts and GM1 cluster rafts were stably induced in the outer leaflet of the plasma membrane (PM), which triggered the activation of Lyn, H-Ras, and ERK and continually recruited Lyn and H-Ras right beneath them in the inner leaflet with dwell lifetimes <0.1 s. The detection was possible due to the enhanced time resolutions employed here. The recruitment depended on the PM cholesterol and saturated alkyl chains of Lyn and H-Ras, whereas it was blocked by the nonraftophilic transmembrane protein moiety and unsaturated alkyl chains linked to the inner-leaflet molecules. Because GM1 cluster rafts recruited Lyn and H-Ras as efficiently as CD59 cluster rafts, and because the protein moieties of Lyn and H-Ras were not required for the recruitment, we conclude that the transbilayer raft phases induced by the outer-leaflet stabilized rafts recruit lipid-anchored signaling molecules by lateral raft-lipid interactions and thus serve as a key signal transduction platform.


Asunto(s)
Antígenos CD59/metabolismo , Gangliósido G(M1)/metabolismo , Microdominios de Membrana/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Imagen Individual de Molécula , Familia-src Quinasas/metabolismo , Antígenos CD59/genética , Gangliósido G(M1)/genética , Células HeLa , Humanos , Microdominios de Membrana/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Familia-src Quinasas/genética
20.
J Org Chem ; 85(24): 15998-16013, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-32951428

RESUMEN

b-Series gangliosides are abundant in central nervous tissues and are involved in important nerve processes. However, their functions are complicated because of their properties of forming dynamic domains in cell plasma membranes (PMs), called lipid rafts. In this study, we aim to develop fluorescently labeled b-series gangliosides that are useful for single-molecule imaging. The chemical synthesis of fluorescent GD3 and GQ1b was achieved using sialylation and ganglioside synthetic methods previously developed by our group. Furthermore, biophysical evaluations demonstrated that synthesized fluorescent GD3 and GQ1b behaved as raft molecules on cell PMs, suggesting their applicability to the study of raft-associated interactions.


Asunto(s)
Gangliósidos , Microdominios de Membrana , Membrana Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...