Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746097

RESUMEN

Seasonal changes in spring induce flowering by expressing the florigen, FLOWERING LOCUS T (FT), in Arabidopsis . FT is expressed in unique phloem companion cells with unknown characteristics. The question of which genes are co-expressed with FT and whether they have roles in flowering remains elusive. Through tissue-specific translatome analysis, we discovered that under long-day conditions with the natural sunlight red/far-red ratio, the FT -producing cells express a gene encoding FPF1-LIKE PROTEIN 1 (FLP1). The master FT regulator, CONSTANS (CO), controls FLP1 expression, suggesting FLP1 's involvement in the photoperiod pathway. FLP1 promotes early flowering independently of FT, is active in the shoot apical meristem, and induces the expression of SEPALLATA 3 ( SEP3 ), a key E-class homeotic gene. Unlike FT, FLP1 facilitates inflorescence stem elongation. Our cumulative evidence indicates that FLP1 may act as a mobile signal. Thus, FLP1 orchestrates floral initiation together with FT and promotes inflorescence stem elongation during reproductive transitions.

2.
Front Plant Sci ; 15: 1377352, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628368

RESUMEN

Stomata play a pivotal role in balancing CO2 uptake for photosynthesis and water loss via transpiration. Thus, appropriate regulation of stomatal movement and its formation are crucial for plant growth and survival. Red and blue light induce phosphorylation of the C-terminal residue of the plasma membrane (PM) H+-ATPase, threonine, in guard cells, generating the driving force for stomatal opening. While significant progress has been made in understanding the regulatory mechanism of PM H+-ATPase in guard cells, the regulatory components for the phosphorylation of PM H+-ATPase have not been fully elucidated. Recently, we established a new immunohistochemical technique for detecting guard-cell PM H+-ATPase phosphorylation using leaves, which was expected to facilitate investigations with a single leaf. In this study, we applied the technique to genetic screening experiment to explore novel regulators for the phosphorylation of PM H+-ATPase in guard cells, as well as stomatal development. We successfully performed phenotyping using a single leaf. During the experiment, we identified a mutant exhibiting high stomatal density, jozetsu (jzt), named after a Japanese word meaning 'talkative'. We found that a novel semi-dominant mutation in BRASSINOSTEROID SIGNALING KINASE1 (BSK1) is responsible for the phenotype in jzt mutant. The present results demonstrate that the new immunohistochemical technique has a wide range of applications, and the novel mutation would provide genetic tool to expand our understanding of plant development mediated by brassinosteroid signaling.

3.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38542206

RESUMEN

Near-infrared photoimmunotherapy (NIR-PIT) is a novel cancer therapy based on a monoclonal antibody (mAb) conjugated to a photosensitizer (IR700Dye). The conjugate can be activated by near-infrared light irradiation, causing necrotic cell death with high selectivity. In this study, we investigated NIR-PIT using a small protein mimetic (6-7 kDa, Affibody) which has more rapid clearance and better tissue penetration than mAbs for epidermal growth factor receptor (EGFR)-positive salivary gland cancer (SGC). The level of EGFR expression was examined in vitro using immunocytochemistry and Western blotting. Cell viability was analyzed using the alamarBlue assay. In vivo, the volume of EGFR-positive tumors treated with NIR-PIT using the EGFR Affibody-IR700Dye conjugate was followed for 43 days. It was found that NIR-PIT using the EGFR Affibody-IR700Dye conjugate induced the selective destruction of EGFR-positive SGC cells and restricted the progression of EGFR-positive tumors. We expect that NIR-PIT using the EGFR Affibody-IR700Dye conjugate can efficiently treat EGFR-positive SGC and preserve normal salivary function.


Asunto(s)
Fototerapia , Neoplasias de las Glándulas Salivales , Humanos , Línea Celular Tumoral , Inmunoterapia , Fármacos Fotosensibilizantes/farmacología , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Receptores ErbB , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Plant J ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38477703

RESUMEN

Abscisic acid (ABA) is a phytohormone that promotes leaf senescence in response to environmental stress. We previously identified methyl CpG-binding domain 10 (MBD10) as a phosphoprotein that becomes differentially phosphorylated after ABA treatment in Arabidopsis. ABA-induced leaf senescence was delayed in mbd10 knockout plants but accelerated in MBD10-overexpressing plants, suggesting that MBD10 positively regulates ABA-induced leaf senescence. ABA-induced phosphorylation of MBD10 occurs in planta on Thr-89, and our results demonstrated that Thr-89 phosphorylation is essential for MBD10's function in leaf senescence. The in vivo phosphorylation of Thr-89 in MBD10 was significantly downregulated in a quadruple mutant of group C MAPKs (mpk1/2/7/14), and group C MAPKs directly phosphorylated MBD10 in vitro. Furthermore, mpk1/2/7/14 showed a similar phenotype as seen in mbd10 for ABA-induced leaf senescence, suggesting that group C MAPKs are the cognate kinases of MBD10 for Thr-89. Because group C MAPKs have been reported to function downstream of SnRK2s, our results indicate that group C MAPKs and MBD10 constitute a regulatory pathway for ABA-induced leaf senescence.

6.
Nat Commun ; 15(1): 1098, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321030

RESUMEN

In angiosperms, the transition from floral-organ maintenance to abscission determines reproductive success and seed dispersion. For petal abscission, cell-fate decisions specifically at the petal-cell base are more important than organ-level senescence or cell death in petals. However, how this transition is regulated remains unclear. Here, we identify a jasmonic acid (JA)-regulated chromatin-state switch at the base of Arabidopsis petals that directs local cell-fate determination via autophagy. During petal maintenance, co-repressors of JA signaling accumulate at the base of petals to block MYC activity, leading to lower levels of ROS. JA acts as an airborne signaling molecule transmitted from stamens to petals, accumulating primarily in petal bases to trigger chromatin remodeling. This allows MYC transcription factors to promote chromatin accessibility for downstream targets, including NAC DOMAIN-CONTAINING PROTEIN102 (ANAC102). ANAC102 accumulates specifically at the petal base prior to abscission and triggers ROS accumulation and cell death via AUTOPHAGY-RELATED GENEs induction. Developmentally induced autophagy at the petal base causes maturation, vacuolar delivery, and breakdown of autophagosomes for terminal cell differentiation. Dynamic changes in vesicles and cytoplasmic components in the vacuole occur in many plants, suggesting JA-NAC-mediated local cell-fate determination by autophagy may be conserved in angiosperms.


Asunto(s)
Arabidopsis , Ciclopentanos , Oxilipinas , Arabidopsis/genética , Flores/genética , Especies Reactivas de Oxígeno/metabolismo , Autofagia , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Plant Cell Physiol ; 65(3): 428-446, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38174441

RESUMEN

Many terrestrial plants produce large quantities of alkanes for use in epicuticular wax and the pollen coat. However, their carbon chains must be long to be useful as fuel or as a petrochemical feedstock. Here, we focus on Nymphaea odorata, which produces relatively short alkanes in its anthers. We identified orthologs of the Arabidopsis alkane biosynthesis genes AtCER1 and AtCER3 in N. odorata and designated them NoCER1A, NoCER3A and NoCER3B. Expression analysis of NoCER1A and NoCER3A/B in Arabidopsis cer mutants revealed that the N. odorata enzymes cooperated with the Arabidopsis enzymes and that the NoCER1A produced shorter alkanes than AtCER1, regardless of which CER3 protein it interacted with. These results indicate that AtCER1 frequently uses a C30 substrate, whereas NoCER1A, NoCER3A/B and AtCER3 react with a broad range of substrate chain lengths. The incorporation of shorter alkanes disturbed the formation of wax crystals required for water-repellent activity in stems, suggesting that chain-length specificity is important for surface cleaning. Moreover, cultured tobacco cells expressing NoCER1A and NoCER3A/B effectively produced C19-C23 alkanes, indicating that the introduction of the two enzymes is sufficient to produce alkanes. Taken together, our findings suggest that these N. odorata enzymes may be useful for the biological production of alkanes of specific lengths. 3D modeling revealed that CER1s and CER3s share a similar structure that consists of N- and C-terminal domains, in which their predicted active sites are respectively located. We predicted the complex structure of both enzymes and found a cavity that connects their active sites.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Nymphaea , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Nymphaea/metabolismo , Alcanos/metabolismo , Liasas de Carbono-Carbono/metabolismo
8.
Plant Physiol ; 194(4): 2422-2433, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38235762

RESUMEN

Embedded ß-barrel proteins in the outer envelope membrane mediate most cellular trafficking between the cytoplasm and plastids. Although the TRANSLOCON AT THE OUTER ENVELOPE MEMBRANE OF CHLOROPLASTS 75-V (TOC75-V)/OUTER ENVELOPE PROTEIN OF 80 KDA (OEP80) complex has been implicated in the insertion and assembly of ß-barrel proteins in the outer envelope membrane of Arabidopsis (Arabidopsis thaliana) chloroplasts, relatively little is known about this process. CRUMPLED LEAF (CRL) encodes a chloroplast outer envelope membrane-localized protein, and its loss-of-function mutation results in pleiotropic defects, including altered plant morphogenesis, growth retardation, suppression of plastid division, and spontaneous light intensity-dependent localized cell death. A suppressor screen conducted on mutagenized crl mutants revealed that a missense mutation in OEP80 suppresses the pleiotropic defects of crl. Furthermore, we found that OEP80 complex formation is compromised in crl. Additionally, we demonstrated that CRL interacts with OEP80 in vivo and that a portion of CRL is present at the same molecular weight as the OEP80 complex. Our results suggest that CRL interacts with OEP80 to facilitate its complex formation. CRL is involved in plastid protein import; therefore, the pleiotropic defects in crl are likely due to the combined effects of decreased plastid protein import and altered membrane integration of ß-barrel proteins in the outer envelope membrane. This study sheds light on the mechanisms that allow ß-barrel protein integration into the plastid outer envelope membrane and the importance of this finding for plant cellular processes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Proteínas de la Membrana/metabolismo , Plastidios/genética , Plastidios/metabolismo , Transporte de Proteínas
9.
Biosci Biotechnol Biochem ; 88(2): 154-167, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38040489

RESUMEN

Leucine-rich repeat (LRR)-containing proteins have been identified in diverse species, including plants. The diverse intracellular and extracellular LRR variants are responsible for numerous biological processes. We analyzed the expression patterns of Arabidopsis thaliana extracellular LRR (AtExLRR) genes, 10 receptor-like proteins, and 4 additional genes expressing the LRR-containing protein by a promoter: ß-glucuronidase (GUS) study. According to in silico expression studies, several AtExLRR genes were expressed in a tissue- or stage-specific and abiotic/hormone stress-responsive manner, indicating their potential participation in specific biological processes. Based on the promoter: GUS assay, AtExLRRs were expressed in different cells and organs. A quantitative real-time PCR investigation revealed that the expressions of AtExLRR3 and AtExLRR9 were distinct under various abiotic stress conditions. This study investigated the potential roles of extracellular LRR proteins in plant growth, development, and response to various abiotic stresses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas Repetidas Ricas en Leucina , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glucuronidasa/genética , Regiones Promotoras Genéticas/genética , Regulación de la Expresión Génica de las Plantas
10.
PLoS One ; 18(12): e0285241, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38134185

RESUMEN

Plant root development involves multiple signal transduction pathways. Notably, phytohormones like auxin and cytokinin are well characterized for their molecular mechanisms of action. Reactive oxygen species (ROS) serve as crucial signaling molecules in controlling root development. The transcription factor, UPBEAT1 (UPB1) is responsible for maintaining ROS homeostasis at the root tip, influencing the transition from cell proliferation to differentiation. While UPB1 directly regulates peroxidase expression to control ROS homeostasis, it targets genes other than peroxidases, suggesting its involvement in root growth through non-ROS signals. Our investigation focused on the transcription factor MYB50, a direct target of UPB1, in Arabidopsis thaliana. By analyzing multiple fluorescent proteins and conducting RNA-seq and ChIP-seq, we unraveled a step in the MYB50 regulatory gene network. This analysis, in conjunction with the UPB1 regulatory network, demonstrated that MYB50 directly regulates the expression of PECTIN METHYLESTERASE INHIBITOR 8 (PMEI8). Overexpressing PMEI8, similar to the MYB50, resulted in reduced mature cell length. These findings establish MYB50 as a regulator of root growth within the UPB1 gene regulatory network. Our study presents a model involving transcriptional regulation by MYB50 in the UPB1 regulated root growth system and sheds light on cell elongation via pectin modification.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hidrolasas de Éster Carboxílico , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proliferación Celular , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Hidrolasas de Éster Carboxílico/genética
11.
ACS Omega ; 8(40): 37431-37441, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37841174

RESUMEN

Automatic optimization methods for compounds in the vast compound space are important for drug discovery and material design. Several machine learning-based molecular generative models for drug discovery have been proposed, but most of these methods generate compounds from scratch and are not suitable for exploring and optimizing user-defined compounds. In this study, we developed a compound optimization method based on molecular graphs using deep reinforcement learning. This method searches for compounds on a fragment-by-fragment basis and at high density by generating fragments to be added atom by atom. Experimental results confirmed that the quantum electrodynamics (QED), the optimization target set in this study, was enhanced by searching around the starting compound. As a use case, we successfully enhanced the activity of a compound by targeting dopamine receptor D2 (DRD2). This means that the generated compounds are not structurally dissimilar from the starting compounds, as well as increasing their activity, indicating that this method is suitable for optimizing molecules from a given compound. The source code is available at https://github.com/sekijima-lab/GARGOYLES.

12.
Front Pediatr ; 11: 1255882, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37876525

RESUMEN

Objective: The aim of the study is to discuss the efficacy of live vs. remote cadaver surgical training (CST) for minimally invasive surgery (MIS). Methods: A cohort of 30 interns in their first and second years of training were divided into three groups: live observers (n = 12), live participants (n = 6), and remote observers: (n = 12). The interns had the opportunity to either observe or actively participate in two different surgical procedures, namely, laparoscopic lower anterior resection, performed by a colorectal surgical team, and laparoscopic fundoplication, performed by a pediatric surgical team. The procedures were conducted either at a base center or at a remote center affiliated with the institute. Some of the interns interacted directly with the surgical teams at the base center, and others interacted indirectly with the surgical teams from the remote center. All interns were administered questionnaires before and after completion of the CST in order to assess their understanding of various aspects related to the operating room layout/instruments (called "design"), accessing the surgical field (called "field"), understanding of anatomic relations (called "anatomy"), their skill of dissection (called "dissection"), ability to resolve procedural/technical problems (called "troubleshooting"), and their skill in planning surgery (called "planning") according to their confidence to operate using the following scale: 1 = not confident to operate independently; 4 = confident to operate with a more senior trainee; 7 = confident to operate with a peer; and 10 = confident to operate with a less experienced trainee. A p < 0.05 was considered statistically significant. Results: All scores improved after CST at both the base and remote centers. The following significant increases were observed: for remote observers: "field" (2.67→4.92; p < .01), "anatomy" (3.58→5.75; p < .01), "dissection" (3.08→4.33; p = .01), and "planning" (3.08→4.33; p < .01); for live observers: "design" (3.75→6.17; p < .01), "field" (2.83→5.17; p < .01), "anatomy" (3.67→5.58; p < .01), "dissection" (3.17→4.58; p < .01), "troubleshooting" (2.33→3.67; p < .01), and "planning" (2.92→4.25; p < .01); and for live participants: "design" (3.83→6.33; p = .02), "field" (2.83→6.83; p < .01), "anatomy" (3.67→5.67; p < .01), "dissection" (2.83→6.17; p < .01), "troubleshooting" (2.17→4.17; p < .01), and "planning" (2.83→4.67; p < .01). Understanding of "design" improved significantly after CST in live observers compared with remote observers (p < .01). Understanding of "field and "dissection" improved significantly after CST in live participants compared with live observers (p = .01, p = .03, respectively). Out of the 12 remote observers, 10 participants (83.3%) reported that interacting with surgical teams was easy because they were not on-site. Conclusions: Although all the responses were subjective and the respondents were aware that observation was inferior to hands-on experience, the results from both centers were equivalent, suggesting that remote learning could potentially be viable when resources are limited.

13.
Physiol Plant ; 175(5): e14052, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37882264

RESUMEN

Basal plant immune responses are activated by the recognition of conserved microbe-associated molecular patterns (MAMPs), or breakdown molecules released from the plants after damage by pathogen penetration, so-called damage-associated molecular patterns (DAMPs). While chitin-oligosaccharide (CHOS), a primary component of fungal cell walls, is most known as MAMP, plant cell wall-derived oligosaccharides, cello-oligosaccharides (COS) from cellulose, and xylo-oligosaccharide (XOS) from hemicellulose are representative DAMPs. In this study, elicitor activities of COS prepared from cotton linters, XOS prepared from corn cobs, and chitin-oligosaccharide (CHOS) from crustacean shells were comparatively investigated. In Arabidopsis, COS, XOS, or CHOS treatment triggered typical defense responses such as reactive oxygen species (ROS) production, phosphorylation of MAP kinases, callose deposition, and activation of the defense-related transcription factor WRKY33 promoter. When COS, XOS, and CHOS were used at concentrations with similar activity in inducing ROS production and callose depositions, CHOS was particularly potent in activating the MAPK kinases and WRKY33 promoters. Among the COS and XOS with different degrees of polymerization, cellotriose and xylotetraose showed the highest activity for the activation of WRKY33 promoter. Gene ontology enrichment analysis of RNAseq data revealed that simultaneous treatment of COS, XOS, and CHOS (oligo-mix) effectively activates plant disease resistance. In practice, treatment with the oligo-mix enhanced the resistance of tomato to powdery mildew, but plant growth was not inhibited but rather tended to be promoted, providing evidence that treatment with the oligo-mix has beneficial effects on improving disease resistance in plants, making them a promising class of compounds for practical application.


Asunto(s)
Arabidopsis , Resistencia a la Enfermedad , Especies Reactivas de Oxígeno/metabolismo , Plantas/metabolismo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Oligosacáridos/farmacología , Oligosacáridos/metabolismo , Quitina/farmacología , Quitina/metabolismo , Enfermedades de las Plantas/genética , Inmunidad de la Planta
14.
Physiol Plant ; 175(5): e14000, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37882282

RESUMEN

Sink-source imbalance causes accumulation of nonstructural carbohydrates (NSCs) and photosynthetic downregulation. However, despite numerous studies, it remains unclear whether NSC accumulation or N deficiency more directly decreases steady-state maximum photosynthesis and photosynthetic induction, as well as underlying gene expression profiles. We evaluated the relationship between photosynthetic capacity and NSC accumulation induced by cold girdling, sucrose feeding, and low nitrogen treatment in Glycine max and Phaseolus vulgaris. In G. max, changes in transcriptome profiles were further investigated, focusing on the physiological processes of photosynthesis and NSC accumulation. NSC accumulation decreased the maximum photosynthetic capacity and delayed photosynthetic induction in both species. In G. max, such photosynthetic downregulation was explained by coordinated downregulation of photosynthetic genes involved in the Calvin cycle, Rubisco activase, photochemical reactions, and stomatal opening. Furthermore, sink-source imbalance may have triggered a change in the balance of sugar-phosphate translocators in chloroplast membranes, which may have promoted starch accumulation in chloroplasts. Our findings provide an overall picture of photosynthetic downregulation and NSC accumulation in G. max, demonstrating that photosynthetic downregulation is triggered by NSC accumulation and cannot be explained solely by N deficiency.


Asunto(s)
Hojas de la Planta , Transcriptoma , Hojas de la Planta/metabolismo , Fotosíntesis/fisiología , Carbohidratos , Perfilación de la Expresión Génica
15.
Commun Biol ; 6(1): 903, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37666980

RESUMEN

Maintaining stable and transient quiescence in differentiated and stem cells, respectively, requires repression of the cell cycle. The plant RETINOBLASTOMA-RELATED (RBR) has been implicated in stem cell maintenance, presumably by forming repressor complexes with E2F transcription factors. Surprisingly we find that mutations in all three canonical E2Fs do not hinder the cell cycle, but similarly to RBR silencing, result in hyperplasia. Contrary to the growth arrest that occurs when exit from proliferation to differentiation is inhibited upon RBR silencing, the e2fabc mutant develops enlarged organs with supernumerary stem and differentiated cells as quiescence is compromised. While E2F, RBR and the M-phase regulatory MYB3Rs are part of the DREAM repressor complexes, and recruited to overlapping groups of targets, they regulate distinct sets of genes. Only the loss of E2Fs but not the MYB3Rs interferes with quiescence, which might be due to the ability of E2Fs to control both G1-S and some key G2-M targets. We conclude that collectively the three canonical E2Fs in complex with RBR have central roles in establishing cellular quiescence during organ development, leading to enhanced plant growth.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Humanos , Retinoblastoma/genética , División Celular , Ciclo Celular/genética , Desarrollo de la Planta
16.
Nat Commun ; 14(1): 4763, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553331

RESUMEN

The three-dimensional shape of a flower is integrated by morphogenesis along different axes. Differentiation along the petal proximodistal axis is tightly linked to the specification of pollinators; however, it is still unclear how a petal patterns this axis. The corolla of Torenia fournieri exhibits strong differentiation along the proximodistal axis, and we previously found a proximal regulator, TfALOG3, controlling corolla neck differentiation. Here, we report another gene, TfBOP2, which is predominantly expressed in the proximal region of the corolla. TfBOP2 mutants have shorter proximal corolla tubes and longer distal lobe, demonstrating its function as a proximal regulator. Arabidopsis BOPs mutant shows similar defects, favouring a shared role of BOPs homologues. Genetic analysis demonstrates the interaction between TfBOP2 and TfALOG3, and we further found that TfALOG3 physically interacts with TfBOP2 and can recruit TfBOP2 to the nuclear region. Our study favours a hypothetical shared BOP-ALOG complex that is recruited to regulate corolla differentiation in the proximal region axis of T. fournieri.


Asunto(s)
Núcleo Celular , Flores , Flores/genética
17.
Sci Adv ; 9(27): eadg6983, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37418524

RESUMEN

Plants can regenerate their bodies via de novo establishment of shoot apical meristems (SAMs) from pluripotent callus. Only a small fraction of callus cells is eventually specified into SAMs but the molecular mechanisms underlying fate specification remain obscure. The expression of WUSCHEL (WUS) is an early hallmark of SAM fate acquisition. Here, we show that a WUS paralog, WUSCHEL-RELATED HOMEOBOX 13 (WOX13), negatively regulates SAM formation from callus in Arabidopsis thaliana. WOX13 promotes non-meristematic cell fate via transcriptional repression of WUS and other SAM regulators and activation of cell wall modifiers. Our Quartz-Seq2-based single cell transcriptome revealed that WOX13 plays key roles in determining cellular identity of callus cell population. We propose that reciprocal inhibition between WUS and WOX13 mediates critical cell fate determination in pluripotent cell population, which has a major impact on regeneration efficiency.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Homeodominio , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes Homeobox , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Meristema/genética , Meristema/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Regeneración/genética
18.
Proc Natl Acad Sci U S A ; 120(24): e2221863120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37276398

RESUMEN

Osmotic stresses, such as drought and high salinity, adversely affect plant growth and productivity. The phytohormone abscisic acid (ABA) accumulates in response to osmotic stress and enhances stress tolerance in plants by triggering multiple physiological responses through ABA signaling. Subclass III SNF1-related protein kinases 2 (SnRK2s) are key regulators of ABA signaling. Although SnRK2s have long been considered to be self-activated by autophosphorylation after release from PP2C-mediated inhibition, they were recently revealed to be activated by two independent subfamilies of group B Raf-like kinases, B2-RAFs and B3-RAFs, under osmotic stress conditions. However, the relationship between SnRK2 phosphorylation by these RAFs and SnRK2 autophosphorylation and the individual physiological roles of each RAF subfamily remain unknown. In this study, we indicated that B2-RAFs are constantly active and activate SnRK2s when released from PP2C-mediated inhibition by ABA-binding ABA receptors, whereas B3-RAFs are activated only under stress conditions in an ABA-independent manner and enhance SnRK2 activity. Autophosphorylation of subclass III SnRK2s is not sufficient for ABA responses, and B2-RAFs are needed to activate SnRK2s in an ABA-dependent manner. Using plants grown in soil, we found that B2-RAFs regulate subclass III SnRK2s at the early stage of drought stress, whereas B3-RAFs regulate SnRK2s at the later stage. Thus, B2-RAFs are essential kinases for the activation of subclass III SnRK2s in response to ABA under mild osmotic stress conditions, and B3-RAFs function as enhancers of SnRK2 activity under severe stress conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sequías , Fosforilación , Plantas/genética , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
19.
Plant Cell ; 35(8): 2821-2847, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37144857

RESUMEN

The MADS domain transcription factor AGAMOUS (AG) regulates floral meristem termination by preventing maintenance of the histone modification lysine 27 of histone H3 (H3K27me3) along the KNUCKLES (KNU) coding sequence. At 2 d after AG binding, cell division has diluted the repressive mark H3K27me3, allowing activation of KNU transcription prior to floral meristem termination. However, how many other downstream genes are temporally regulated by this intrinsic epigenetic timer and what their functions are remain unknown. Here, we identify direct AG targets regulated through cell cycle-coupled H3K27me3 dilution in Arabidopsis thaliana. Expression of the targets KNU, AT HOOK MOTIF NUCLEAR LOCALIZED PROTEIN18 (AHL18), and PLATZ10 occurred later in plants with longer H3K27me3-marked regions. We established a mathematical model to predict timing of gene expression and manipulated temporal gene expression using the H3K27me3-marked del region from the KNU coding sequence. Increasing the number of del copies delayed and reduced KNU expression in a polycomb repressive complex 2- and cell cycle-dependent manner. Furthermore, AHL18 was specifically expressed in stamens and caused developmental defects when misexpressed. Finally, AHL18 bound to genes important for stamen growth. Our results suggest that AG controls the timing of expression of various target genes via cell cycle-coupled dilution of H3K27me3 for proper floral meristem termination and stamen development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Meristema , Histonas/genética , Histonas/metabolismo , Flores/fisiología , Arabidopsis/metabolismo , División Celular , Regulación de la Expresión Génica de las Plantas/genética , Proteína AGAMOUS de Arabidopsis/genética , Proteína AGAMOUS de Arabidopsis/metabolismo
20.
Sci Rep ; 13(1): 8821, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37258621

RESUMEN

TAS-115 is an oral multi-receptor tyrosine kinase inhibitor that strongly inhibits kinases implicated in antitumor immunity, such as colony stimulating factor 1 receptor and vascular endothelial growth factor receptor. Because these kinases are associated with the modulation of immune pathways, we investigated the immunomodulatory activity of TAS-115. An in vitro cytokine assay revealed that TAS-115 upregulated interferon γ (IFNγ) and interleukin-2 secretion by T cells, suggesting that TAS-115 activated T cells. Gene expression analysis suggested that TAS-115 promoted M1 macrophage differentiation. In in vivo experiments, although TAS-115 exerted a moderate antitumor effect in the MC38 mouse colorectal cancer model under immunodeficient conditions, this effect was enhanced under immunocompetent conditions. Furthermore, combination of TAS-115 and anti-PD-1 antibody exhibited greater antitumor activity than either treatment alone. Flow cytometry analysis showed the increase in IFNγ- and granzyme B (Gzmb)-secreting tumor-infiltrating T cells by TAS-115 treatment. The combination treatment further increased the percentage of Gzmb+CD8+ T cells and decreased the percentage of macrophages compared with either treatment alone. These results highlight the potential therapeutic effect of TAS-115 in combination with PD-1 blockade, mediated via activation of antitumor immunity by TAS-115.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Animales , Ratones , Línea Celular Tumoral , Modelos Animales de Enfermedad , Interferón gamma/metabolismo , Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas Receptoras , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...