Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Mol Biol Cell ; 34(11): ar110, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37585286

RESUMEN

Alcadein α (Alcα) and amyloid-ß protein precursor (APP) are cargo receptors that associate vesicles with kinesin-1. These vesicles, which contain either Alcα or APP, transport various proteins/cargo molecules into axon nerve terminals. Here, we analyzed immune-isolated Alcα- and APP-containing vesicles of adult mouse brains with LC-MS/MS and identified proteins present in vesicles that contained either Alcα or APP. Among these proteins, Frizzled-5 (Fzd5), a Wnt receptor, was detected mainly in Alcα vesicles. Although colocalization ratios of Fzd5 with Alcα are low in the neurites of differentiating neurons by a low expression of Fzd5 in embryonic brains, the suppression of Alcα expression decreased the localization of Fzd5 in neurites of primary cultured neurons. Furthermore, Fzd5-EGFP expressed in primary cultured neurons was preferentially transported in axons with the transport velocities of Alcα vesicles. In synaptosomal fractions of adult-mice brains that express higher levels of Fzd5, the amount of Fzd5 and the phosphorylation level of calcium/calmodulin-dependent protein kinase-II were reduced in the Alcα-deficient mice. These results suggest that reduced transport of Fzd5 by Alcα-containing vesicles associated with kinesin-1 in axon terminals may impair the response to Wnt ligands in the noncanonical Ca2+-dependent signal transduction pathway at nerve terminals of mature neurons.


Asunto(s)
Transporte Axonal , Cinesinas , Animales , Ratones , Precursor de Proteína beta-Amiloide/metabolismo , Transporte Axonal/fisiología , Cromatografía Liquida , Cinesinas/metabolismo , Espectrometría de Masas en Tándem
2.
EMBO Mol Med ; 15(5): e17052, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36994913

RESUMEN

We propose a new therapeutic strategy for Alzheimer's disease (AD). Brain peptide p3-Alcß37 is generated from the neuronal protein alcadein ß through cleavage of γ-secretase, similar to the generation of amyloid ß (Aß) derived from Aß-protein precursor/APP. Neurotoxicity by Aß oligomers (Aßo) is the prime cause prior to the loss of brain function in AD. We found that p3-Alcß37 and its shorter peptide p3-Alcß9-19 enhanced the mitochondrial activity of neurons and protected neurons against Aßo-induced toxicity. This is due to the suppression of the Aßo-mediated excessive Ca2+ influx into neurons by p3-Alcß. Successful transfer of p3-Alcß9-19 into the brain following peripheral administration improved the mitochondrial viability in the brain of AD mice model, in which the mitochondrial activity is attenuated by increasing the neurotoxic human Aß42 burden, as revealed through brain PET imaging to monitor mitochondrial function. Because mitochondrial dysfunction is common in the brain of AD patients alongside increased Aß and reduced p3-Alcß37 levels, the administration of p3-Alcß9-19 may be a promising treatment for restoring, protecting, and promoting brain functions in patients with AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ratones , Animales , Humanos , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo
3.
J Vis Exp ; (192)2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36912529

RESUMEN

Neuronal cells are highly polarized cells that stereotypically harbor several dendrites and an axon. The length of an axon necessitates efficient bidirectional transport by motor proteins. Various reports have suggested that defects in axonal transport are associated with neurodegenerative diseases. Also, the mechanism of the coordination of multiple motor proteins has been an attractive topic. Since the axon has uni-directional microtubules, it is easier to determine which motor proteins are involved in the movement. Therefore, understanding the mechanisms underlying the transport of axonal cargo is crucial for uncovering the molecular mechanism of neurodegenerative diseases and the regulation of motor proteins. Here, we introduce the entire process of axonal transport analysis, including the culturing of mouse primary cortical neurons, transfection of plasmids encoding cargo proteins, and directional and velocity analyses without the effect of pauses. Furthermore, the open-access software "KYMOMAKER" is introduced, which enables the generation of a kymograph to highlight transport traces according to their direction and allow easier visualization of axonal transport.


Asunto(s)
Transporte Axonal , Enfermedades Neurodegenerativas , Ratones , Animales , Transporte Axonal/fisiología , Neuronas/metabolismo , Axones/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Células Cultivadas
4.
Neurobiol Aging ; 123: 63-74, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36638682

RESUMEN

Apolipoprotein E4 (apoE4) is a risk factor for Alzheimer's disease (AD). Here, we investigated brain amyloid-ß (Aß) accumulation throughout the aging process in an amyloid precursor protein (APP) knock-in (KI) mouse model of AD that expresses human APPNL-G-F with or without human apoE4 or apoE3. Brain Aß42 levels were significantly lower in 9-month-old mice that express human isoforms of apoE than in age-matched APP-KI control mice. Linear accumulation of Aß42 began in 5-month-old apoE4 mice, and a strong increase in Aß42 levels was observed in 21-month-old apoE3 mice. Aß42 levels in cerebroventricular fluid were higher in apoE3 than in apoE4 mice at 6-7 months of age, suggesting that apoE3 is more efficient at clearing Aß42 than apoE4 at these ages. However, apoE3 protein levels were lower than apoE4 protein levels in the brains of 21-month-old apoE3 and apoE4 mice, respectively, which may explain the rapid increase in brain Aß42 burden in apoE3 mice. We identified genes that were downregulated in a human apoE-dependent (apoE4 > apoE3) and age-dependent (apoE3 = apoE4) manner, which may regulate brain Aß burden and/or AD progression. Analysis of gene expression in AD mouse models helps identify molecular mechanisms of pleiotropy by the human APOE gene during aging.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Ratones Transgénicos , Apolipoproteínas E/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Expresión Génica
5.
Proc Natl Acad Sci U S A ; 120(6): e2218187120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36716358

RESUMEN

Chloroplast FoF1-ATP synthase (CFoCF1) converts proton motive force into chemical energy during photosynthesis. Although many studies have been done to elucidate the catalytic reaction and its regulatory mechanisms, biochemical analyses using the CFoCF1 complex have been limited because of various technical barriers, such as the difficulty in generating mutants and a low purification efficiency from spinach chloroplasts. By taking advantage of the powerful genetics available in the unicellular green alga Chlamydomonas reinhardtii, we analyzed the ATP synthesis reaction and its regulation in CFoCF1. The domains in the γ subunit involved in the redox regulation of CFoCF1 were mutated based on the reported structure. An in vivo analysis of strains harboring these mutations revealed the structural determinants of the redox response during the light/dark transitions. In addition, we established a half day purification method for the entire CFoCF1 complex from C. reinhardtii and subsequently examined ATP synthesis activity by the acid-base transition method. We found that truncation of the ß-hairpin domain resulted in a loss of redox regulation of ATP synthesis (i.e., constitutively active state) despite retaining redox-sensitive Cys residues. In contrast, truncation of the redox loop domain containing the Cys residues resulted in a marked decrease in the activity. Based on this mutation analysis, we propose a model of redox regulation of the ATP synthesis reaction by the cooperative function of the ß-hairpin and the redox loop domains specific to CFoCF1.


Asunto(s)
ATPasas de Translocación de Protón de Cloroplastos , Cloroplastos , ATPasas de Translocación de Protón de Cloroplastos/genética , ATPasas de Translocación de Protón de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Fotosíntesis/genética , Oxidación-Reducción , Adenosina Trifosfato/metabolismo
6.
J Am Chem Soc ; 144(31): 14132-14139, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35905443

RESUMEN

Proton translocation through the membrane-embedded Fo component of F-type ATP synthase (FoF1) is facilitated by the rotation of the Fo c-subunit ring (c-ring), carrying protons at essential acidic amino acid residues. Cryo-electron microscopy (Cryo-EM) structures of FoF1 suggest a unique proton translocation mechanism. To elucidate it based on the chemical conformation of the essential acidic residues of the c-ring in FoF1, we determined the structure of the isolated thermophilic Bacillus Fo (tFo) c-ring, consisting of 10 subunits, in membranes by solid-state NMR. This structure contains a distinct proton-locking conformation, wherein Asn23 (cN23) CγO and Glu56 (cE56) CδOH form a hydrogen bond in a closed form. We introduced stereo-array-isotope-labeled (SAIL) Glu and Asn into the tFoc-ring to clarify the chemical conformation of these residues in tFoF1-ATP synthase (tFoF1). Two well-separated 13C signals could be detected for cN23 and cE56 in a 505 kDa membrane protein complex, respectively, thereby suggesting the presence of two distinct chemical conformations. Based on the signal intensity and structure of the tFoc-ring and tFoF1, six pairs of cN23 and cE56 surrounded by membrane lipids take the closed form, whereas the other four in the a-c interface employ the deprotonated open form at a proportion of 87%. This indicates that the a-c interface is highly hydrophilic. The pKa values of the four cE56 residues in the a-c interface were estimated from the cN23 signal intensity in the open and closed forms and distribution of polar residues around each cE56. The results favor a rotation of the c-ring for ATP synthesis.


Asunto(s)
Bacillus , Adenosina Trifosfato/metabolismo , Bacillus/metabolismo , Microscopía por Crioelectrón , Ácido Glutámico , Conformación Proteica , Subunidades de Proteína/química , ATPasas de Translocación de Protón/metabolismo , Protones
7.
J Biochem ; 171(3): 253-256, 2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-34865063

RESUMEN

γ-Secretase cleaves type I transmembrane proteins in a hydrophobic membrane environment following ectodomain shedding. Mutations in PSEN genes, encoding the catalytic subunits of γ-secretase, presenilins, are the most common cause of familial Alzheimer's disease (ad). Pathogenic mutations in PSEN genes increase production of longer and neurotoxic amyloid-ß (Aß) by intramembrane cleavage of membrane-associated amyloid-ß protein precursor (APP) carboxyl-terminal fragment ß, which is generated via primary cleavage of APP by ß-site APP cleaving enzyme 1. The longer Aß is prone to aggregate and accumulate in the brain; however, the accumulation of Aß in brain is also a pathological feature of sporadic ad. Increased pathogenic Aß generation, even in the absence of pathogenic PSEN gene mutations, is one of proposed mechanisms for sporadic ad pathogenesis. γ-Secretase digests substrates in the transmembrane region, generating Aß peptide intermediates of various lengths. The end products, shorter Aß40 and Aß38 peptides, are less neurotoxic, whereas PSEN gene mutations increase the production ratio of longer, neurotoxic Aß species such as Aß42, an intermediate in Aß38 production. γ-Secretase activity or structures is altered because of its aberrant membrane localization or changes in the ambient environment such as luminal acidification. Interestingly, γ-secretase has a pH sensor in presenilins.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Humanos , Proteínas de la Membrana/genética , Mutación , Dominios Proteicos
8.
J Biol Chem ; 297(3): 101027, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34339736

RESUMEN

The FoF1 synthase produces ATP from ADP and inorganic phosphate. The γ subunit of FoF1 ATP synthase in photosynthetic organisms, which is the rotor subunit of this enzyme, contains a characteristic ß-hairpin structure. This structure is formed from an insertion sequence that has been conserved only in phototrophs. Using recombinant subcomplexes, we previously demonstrated that this region plays an essential role in the regulation of ATP hydrolysis activity, thereby functioning in controlling intracellular ATP levels in response to changes in the light environment. However, the role of this region in ATP synthesis has long remained an open question because its analysis requires the preparation of the whole FoF1 complex and a transmembrane proton-motive force. In this study, we successfully prepared proteoliposomes containing the entire FoF1 ATP synthase from a cyanobacterium, Synechocystis sp. PCC 6803, and measured ATP synthesis/hydrolysis and proton-translocating activities. The relatively simple genetic manipulation of Synechocystis enabled the biochemical investigation of the role of the ß-hairpin structure of FoF1 ATP synthase and its activities. We further performed physiological analyses of Synechocystis mutant strains lacking the ß-hairpin structure, which provided novel insights into the regulatory mechanisms of FoF1 ATP synthase in cyanobacteria via the phototroph-specific region of the γ subunit. Our results indicated that this structure critically contributes to ATP synthesis and suppresses ATP hydrolysis.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , ATPasas de Translocación de Protón/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Hidrólisis , Conformación Proteica , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/aislamiento & purificación , Homología de Secuencia de Aminoácido
9.
Hum Mol Genet ; 31(1): 122-132, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34378027

RESUMEN

Amyloid-ß (Aß) accumulation in the brain triggers the pathogenic cascade for Alzheimer's disease (AD) development. The secretory protein FAM3C (also named ILEI) is a candidate for an endogenous suppressor of Aß production. In this study, we found that FAM3C expression was transcriptionally downregulated in the AD brain. To determine the transcriptional mechanism of the human FAM3C gene, we delineated the minimal 5'-flanking sequence required for basal promoter activity. From a database search for DNA-binding motifs, expression analysis using cultured cells, and promoter DNA-binding assays, we identified SP1 and EBF1 as candidate basal transcription factors for FAM3C, and found that SMAD1 was a putative inducible transcription factor and KLF6 was a transcription repressor for FAM3C. Genomic deletion of the basal promoter sequence from HEK293 and Neuro-2a cells markedly reduced endogenous expression of FAM3C and abrogated SP1- or EBF1-mediated induction of FAM3C. Nuclear protein extracts from AD brains contained lower levels of SP1 and EBF1 than did those from control brains, although the relative mRNA levels of these factors did not differ significantly between the groups. Additionally, the ability of nuclear SP1 and EBF1 in AD brains to bind with the basal promoter sequence-containing DNA probe was reduced compared with the binding ability of these factors in control brains. Thus, the transcriptional downregulation of FAM3C in the AD brain is attributable to the reduced nuclear levels and genomic DNA binding of SP1 and EBF1. An expressional decline in FAM3C may be a risk factor for Aß accumulation and eventually AD development.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Sitios de Unión , Encéfalo/metabolismo , Citocinas/metabolismo , Regulación hacia Abajo/genética , Células HEK293 , Humanos , Proteínas de Neoplasias/metabolismo , Regiones Promotoras Genéticas/genética , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo
10.
J Neurochem ; 159(3): 603-617, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34379812

RESUMEN

Two common conjugated linoleic acids (LAs), cis-9, trans-11 CLA (c9,t11 CLA) and trans-10, cis-12 CLA (t10,c12 CLA), exert various biological activities. However, the effect of CLA on the generation of neurotoxic amyloid-ß (Aß) protein remains unclear. We found that c9,t11 CLA significantly suppressed the generation of Aß in mouse neurons. CLA treatment did not affect the level of ß-site APP-cleaving enzyme 1 (BACE1), a component of active γ-secretase complex presenilin 1 amino-terminal fragment, or Aß protein precursor (APP) in cultured neurons. BACE1 and γ-secretase activities were not directly affected by c9,t11 CLA. Localization of BACE1 and APP in early endosomes increased in neurons treated with c9,t11 CLA; concomitantly, the localization of both proteins was reduced in late endosomes, the predominant site of APP cleavage by BACE1. The level of CLA-containing phosphatidylcholine (CLA-PC) increased dramatically in neurons incubated with CLA. Incorporation of phospholipids containing c9,t11 CLA, but not t10,c12 CLA, into the membrane may affect the localization of some membrane-associated proteins in intracellular membrane compartments. Thus, in neurons treated with c9,t11 CLA, reduced colocalization of APP with BACE1 in late endosomes may decrease APP cleavage by BACE1 and subsequent Aß generation. Our findings suggest that the accumulation of c9,t11 CLA-PC/LPC in neuronal membranes suppresses the production of neurotoxic Aß in neurons.


Asunto(s)
Péptidos beta-Amiloides/biosíntesis , Ácido Linoleico/farmacología , Ácidos Linoleicos Conjugados/farmacología , Neuronas/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/toxicidad , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Células Cultivadas , Suplementos Dietéticos , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Fosfatidilcolinas/metabolismo
11.
Sci Rep ; 11(1): 9749, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980877

RESUMEN

Conjugated linoleic acid (CLA) is an isomer of linoleic acid (LA). The predominant dietary CLA is cis-9, trans-11-CLA (c-9, t-11-CLA), which constitutes up to ~ 90% of total CLA and is thought to be responsible for the positive health benefits associated with CLA. However, the effects of c-9, t-11-CLA on Alzheimer's disease (AD) remain to be elucidated. In this study, we investigated the effect of dietary intake of c-9, t-11-CLA on the pathogenesis of an AD mouse model. We found that c-9, t-11-CLA diet-fed AD model mice significantly exhibited (1) a decrease in amyloid-ß protein (Aß) levels in the hippocampus, (2) an increase in the number of microglia, and (3) an increase in the number of astrocytes expressing the anti-inflammatory cytokines, interleukin-10 and 19 (IL-10, IL-19), with no change in the total number of astrocytes. In addition, liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatographic analysis revealed that the levels of lysophosphatidylcholine (LPC) containing c-9, t-11-CLA (CLA-LPC) and free c-9, t-11-CLA were significantly increased in the brain of c-9, t-11-CLA diet-fed mice. Thus, dietary c-9, t-11-CLA entered the brain and appeared to exhibit beneficial effects on AD, including a decrease in Aß levels and suppression of inflammation.


Asunto(s)
Enfermedad de Alzheimer/dietoterapia , Péptidos beta-Amiloides/metabolismo , Citocinas/metabolismo , Grasas Insaturadas en la Dieta/uso terapéutico , Ácidos Linoleicos Conjugados/uso terapéutico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/análisis , Animales , Citocinas/análisis , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL
12.
J Alzheimers Dis ; 80(1): 159-174, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33492290

RESUMEN

BACKGROUND: Brain amyloid-ß (Aß) peptide is released into the interstitial fluid (ISF) in a neuronal activity-dependent manner, and Aß deposition in Alzheimer's disease (AD) is linked to baseline neuronal activity. Although the intrinsic mechanism for Aß generation remains to be elucidated, interleukin-like epithelial-mesenchymal transition inducer (ILEI) is a candidate for an endogenous Aß suppressor. OBJECTIVE: This study aimed to access the mechanism underlying ILEI secretion and its effect on Aß production in the brain. METHODS: ILEI and Aß levels in the cerebral cortex were monitored using a newly developed ILEI-specific ELISA and in vivo microdialysis in mutant human Aß precursor protein-knockin mice. ILEI levels in autopsied brains and cerebrospinal fluid (CSF) were measured using ELISA. RESULTS: Extracellular release of ILEI and Aß was dependent on neuronal activation and specifically on tetanus toxin-sensitive exocytosis of synaptic vesicles. However, simultaneous monitoring of extracellular ILEI and Aß revealed that a spontaneous fluctuation of ILEI levels appeared to inversely mirror that of Aß levels. Selective activation and inhibition of synaptic receptors differentially altered these levels. The evoked activation of AMPA-type receptors resulted in opposing changes to ILEI and Aß levels. Brain ILEI levels were selectively decreased in AD. CSF ILEI concentration correlated with that of Aß and were reduced in AD and mild cognitive impairment. CONCLUSION: ILEI and Aß are released from distinct subpopulations of synaptic terminals in an activity-dependent manner, and ILEI negatively regulates Aß production in specific synapse types. CSF ILEI might represent a surrogate marker for the accumulation of brain Aß.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Citocinas/genética , Citocinas/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Sinapsis , Anciano , Anciano de 80 o más Años , Precursor de Proteína beta-Amiloide/genética , Animales , Autopsia , Corteza Cerebral/metabolismo , Citocinas/líquido cefalorraquídeo , Espacio Extracelular/metabolismo , Femenino , Técnicas de Sustitución del Gen , Genes Supresores , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Microdiálisis , Actividad Motora , Proteínas de Neoplasias/líquido cefalorraquídeo , Receptores AMPA/metabolismo , Receptores de GABA/metabolismo
13.
Genes Cells ; 26(3): 190-197, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33411976

RESUMEN

Many mutations in the fused in sarcoma (FUS) gene have been identified as genetic causative factors of amyotrophic lateral sclerosis (ALS). As a certain number of mutants form aberrant cytoplasmic granules under specific conditions, granule forming ability of FUS is believed to be linked to the pathogenesis of ALS. However, molecular mechanisms underlying this property remain unclear. An ALS-linked FUS mutant, R495X, shows extensive cytoplasmic localization and forms granules in neurons. In the present study, using R495X domain deletion constructs, we showed that deletion of any of Gly-rich, RGG1 or RGG2 significantly suppressed granule formation. Furthermore, when neurons expressing EGFP-R495X were treated with an arginine methylation inhibitor, the number of cells displaying R495X granules was significantly reduced. When FLAG-tagged arginine N-methyltransferase 8 (PRMT8) was co-expressed with EGFP-R495X to facilitate its methylation, the number of cells with granules was significantly increased. Collectively, these findings suggest that cytoplasmic granule formation by R495X is attributable to the arginine methylation in all Gly-rich, RGG1 and RGG2 domains.


Asunto(s)
Arginina/metabolismo , Gránulos Citoplasmáticos/metabolismo , Glicina/metabolismo , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/genética , Animales , Línea Celular , Humanos , Metilación , Ratones , Mutación/genética , Neuronas , Dominios Proteicos , Relación Estructura-Actividad
14.
Proc Natl Acad Sci U S A ; 117(47): 29647-29657, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33168750

RESUMEN

The rotation of Paracoccus denitrificans F1-ATPase (PdF1) was studied using single-molecule microscopy. At all concentrations of adenosine triphosphate (ATP) or a slowly hydrolyzable ATP analog (ATPγS), above or below Km, PdF1 showed three dwells per turn, each separated by 120°. Analysis of dwell time between steps showed that PdF1 executes binding, hydrolysis, and probably product release at the same dwell. The comparison of ATP binding and catalytic pauses in single PdF1 molecules suggested that PdF1 executes both elementary events at the same rotary position. This point was confirmed in an inhibition experiment with a nonhydrolyzable ATP analog (AMP-PNP). Rotation assays in the presence of adenosine diphosphate (ADP) or inorganic phosphate at physiological concentrations did not reveal any obvious substeps. Although the possibility of the existence of substeps remains, all of the datasets show that PdF1 is principally a three-stepping motor similar to bacterial vacuolar (V1)-ATPase from Thermus thermophilus This contrasts with all other known F1-ATPases that show six or nine dwells per turn, conducting ATP binding and hydrolysis at different dwells. Pauses by persistent Mg-ADP inhibition or the inhibitory ζ-subunit were also found at the same angular position of the rotation dwell, supporting the simplified chemomechanical scheme of PdF1 Comprehensive analysis of rotary catalysis of F1 from different species, including PdF1, suggests a clear trend in the correlation between the numbers of rotary steps of F1 and Fo domains of F-ATP synthase. F1 motors with more distinctive steps are coupled with proton-conducting Fo rings with fewer proteolipid subunits, giving insight into the design principle the F1Fo of ATP synthase.


Asunto(s)
Mitocondrias/metabolismo , Paracoccus denitrificans/metabolismo , ATPasas de Translocación de Protón/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Hidrólisis , Cinética , Rotación , Thermus thermophilus/metabolismo
15.
J Biol Chem ; 295(28): 9650-9662, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32467230

RESUMEN

Alzheimer's disease (AD) is a very common neurodegenerative disorder, chiefly caused by increased production of neurotoxic ß-amyloid (Aß) peptide generated from proteolytic cleavage of ß-amyloid protein precursor (APP). Except for familial AD arising from mutations in the APP and presenilin (PSEN) genes, the molecular mechanisms regulating the amyloidogenic processing of APP are largely unclear. Alcadein α/calsyntenin1 (ALCα/CLSTN1) is a neuronal type I transmembrane protein that forms a complex with APP, mediated by the neuronal adaptor protein X11-like (X11L or MINT2). Formation of the ALCα-X11L-APP tripartite complex suppresses Aß generation in vitro, and X11L-deficient mice exhibit enhanced amyloidogenic processing of endogenous APP. However, the role of ALCα in APP metabolism in vivo remains unclear. Here, by generating ALCα-deficient mice and using immunohistochemistry, immunoblotting, and co-immunoprecipitation analyses, we verified the role of ALCα in the suppression of amyloidogenic processing of endogenous APP in vivo We observed that ALCα deficiency attenuates the association of X11L with APP, significantly enhances amyloidogenic ß-site cleavage of APP, especially in endosomes, and increases the generation of endogenous Aß in the brain. Furthermore, we noted amyloid plaque formation in the brains of human APP-transgenic mice in an ALCα-deficient background. These results unveil a potential role of ALCα in protecting cerebral neurons from Aß-dependent pathogenicity in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Proteínas de Unión al Calcio/deficiencia , Complejos Multiproteicos/metabolismo , Procesamiento Proteico-Postraduccional , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Encéfalo/patología , Proteínas de Unión al Calcio/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Ratones , Ratones Noqueados , Complejos Multiproteicos/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo
16.
J Alzheimers Dis ; 75(1): 45-60, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32250299

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia and understanding its pathogenesis should lead to improved therapeutic and diagnostic methods. Although several groups have developed transgenic mouse models overexpressing the human amyloid-ß precursor protein (APP) gene with AD mutations, with and without presenilin mutations, as well as APP gene knock-in mouse models, these animals display amyloid pathology but do not show neurofibrillary tangles or neuronal loss. This presumably is due to differences between the etiology of the aged-related human disease and the mouse models. Here we report the generation of two transgenic cynomolgus monkeys overexpressing the human gene for APP with Swedish, Artic, and Iberian mutations, and demonstrated expression of gene tagged green fluorescent protein marker in the placenta, amnion, hair follicles, and peripheral blood. We believe that these nonhuman primate models will be very useful to study the pathogenesis of dementia and AD. However, generated Tg monkeys still have some limitations. We employed the CAG promoter, which will promote gene expression in a non-tissue specific manner. Moreover, we used transgenic models but not knock-in models. Thus, the inserted transgene destroys endogenous gene(s) and may affect the phenotype(s). Nevertheless, it will be of great interest to determine whether these Tg monkeys will develop tauopathy and neurodegeneration similar to human AD.


Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Encéfalo/metabolismo , Macaca fascicularis/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Regiones Promotoras Genéticas
17.
Am J Pathol ; 190(6): 1323-1331, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32201261

RESUMEN

Amyloid ß-proteins (Aßs) Aß1-42 and Aß1-43 are converted via two product lines of γ-secretase to Aß1-38 and Aß1-40. This parallel stepwise processing model of γ-secretase predicts that Aß1-42 and Aß1-43, and Aß1-38 and Aß1-40 are proportional to each other, respectively. To obtain further insight into the mechanisms of parenchymal Aß deposition, these four Aß species were quantified in insoluble fractions of human brains (Brodmann areas 9 to 11) at various Braak senile plaque (SP) stages, using specific enzyme-linked immunosorbent assays. With advancing SP stages, the amounts of deposited Aß1-43 in the brain increased proportionally to those of Aß1-42. Similarly, the amounts of deposited Aß1-38 correlated with those of Aß1-40. Surprisingly, the ratios of deposited Aß1-38/Aß1-42 and Aß1-40/Aß1-43 were proportional and discriminated the Braak SP stages accurately. This result indicates that the generation of Aß1-38 and Aß1-40 decreased and the generation of Aß1-42 and Aß1-43 increased with advancing SP stages. Thus, Aßs deposition might depend on γ-secretase activity, as it does in the cerebrospinal fluid. Here, the extracted γ-secretase from Alzheimer disease brains generates an amount of Aß1-42 and Aß1-43 compared with cognitively normal brains. This refractory γ-secretase localized in detergent-solubilized fractions from brain cortices. But activity modulated γ-secretase, which decreases Aß1-42 and Aß1-43 in the cerebrospinal fluid, localized in detergent-insoluble fractions. These drastic alterations reflect Aß situation in Alzheimer disease brains.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Encéfalo/metabolismo , Placa Amiloide/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/patología , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Placa Amiloide/patología
18.
Hum Mol Genet ; 29(3): 382-393, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31841137

RESUMEN

A neuropathologic hallmark of Alzheimer's disease (AD) is the presence of senile plaques that contain neurotoxic amyloid-ß protein (Aß) species, which are generated by the cleavage of amyloid ß-protein precursor by secretases such as the γ-secretase complex, preferentially located in detergent-resistant membrane (DRM) regions and comprising endoproteolysed amino- and carboxy-terminal fragments of presenilin, nicastrin, anterior pharynx defective 1 and presenilin enhancer 2. Whereas some of familial AD patients harbor causative PSEN mutations that lead to more generation of neurotoxic Aß42, the contribution of Aß generation to sporadic/late-onset AD remains unclear. We found that the carboxy-terminal fragment of presenilin 1 was redistributed from DRM regions to detergent-soluble membrane (non-DRM) regions in brain tissue samples from individuals with sporadic AD. DRM fractions from AD brain sample had the ability to generate significantly more Aß and had a lower cholesterol content than DRM fractions from non-demented control subjects. We further demonstrated that lowering the cholesterol content of DRM regions from cultured cells contributed to the redistribution of γ-secretase components and Aß production. Taken together, the present analyses suggest that the lowered cholesterol content in DRM regions may be a cause of sporadic/late-onset AD by enhancing overall Aß generation.


Asunto(s)
Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Microdominios de Membrana/patología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Microdominios de Membrana/metabolismo , Mutación , Presenilina-1/genética , Presenilina-2/genética
19.
Alzheimers Dement (N Y) ; 5: 740-750, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31754625

RESUMEN

INTRODUCTION: Neuronal p3-Alcß peptides are generated from the precursor protein Alcadein ß (Alcß) through cleavage by α- and γ-secretases of the amyloid ß (Aß) protein precursor (APP). To reveal whether p3-Alcß is involved in Alzheimer's disease (AD) contributes for the development of novel therapy and/or drug targets. METHODS: We developed new sandwich enzyme-linked immunosorbent assay (sELISA) systems to quantitate levels of p3-Alcß in the cerebrospinal fluid (CSF). RESULTS: In monkeys, CSF p3-Alcß decreases with age, and the aging is also accompanied by decreased brain expression of Alcß. In humans, CSF p3-Alcß levels decrease to a greater extent in those with AD than in age-matched controls. Subjects carrying presenilin gene mutations show a significantly lower CSF p3-Alcß level. A cell study with an inverse modulator of γ-secretase remarkably reduces the generation of p3-Alcß37 while increasing the production of Aß42. DISCUSSION: Aging decreases the generation of p3-Alcß, and further significant decrease of p3-Alcß caused by aberrant γ-secretase activity may accelerate pathogenesis in AD.

20.
J Neurosci ; 39(44): 8617-8631, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31530643

RESUMEN

Presynaptic active zones (AZs) contain many molecules essential for neurotransmitter release and are assembled in a highly organized manner. A network of adaptor proteins known as cytomatrix at the AZ (CAZ) is important for shaping the structural characteristics of AZ. Rab3-interacting molecule (RIM)-binding protein (RBP) family are binding partners of the CAZ protein RIM and also bind the voltage-gated calcium channels (VGCCs) in mice and flies. Here, we investigated the physiological roles of RIMB-1, the homolog of RBPs in the nematode Caenorhabditis elegans RIMB-1 is expressed broadly in neurons and predominantly localized at presynaptic sites. Loss-of-function animals of rimb-1 displayed slight defects in motility and response to pharmacological inhibition of synaptic transmission, suggesting a modest involvement of rimb-1 in synapse function. We analyzed genetic interactions of rimb-1 by testing candidate genes and by an unbiased forward genetic screen for rimb-1 enhancer. Both analyses identified the RIM homolog UNC-10 that acts together with RIMB-1 to regulate presynaptic localization of the P/Q-type VGCC UNC-2/Cav2. We also find that the precise localization of RIMB-1 to presynaptic sites requires presynaptic UNC-2/Cav2. RIMB-1 has multiple FN3 and SH3 domains. Our transgenic rescue analysis with RIMB-1 deletion constructs revealed a functional requirement of a C-terminal SH3 in regulating UNC-2/Cav2 localization. Together, these findings suggest a redundant role of RIMB-1/RBP and UNC-10/RIM to regulate the abundance of UNC-2/Cav2 at the presynaptic AZ in C. elegans, depending on the bidirectional interplay between CAZ adaptor and channel proteins.SIGNIFICANCE STATEMENT Presynaptic active zones (AZs) are highly organized structures for synaptic transmission with characteristic networks of adaptor proteins called cytomatrix at the AZ (CAZ). In this study, we characterized a CAZ protein RIMB-1, named for RIM-binding protein (RBP), in the nematode Caenorhabditis elegans Through systematic analyses of genetic interactions and an unbiased genetic enhancer screen of rimb-1, we revealed a redundant role of two CAZ proteins RIMB-1/RBP and UNC-10/RIM in regulating presynaptic localization of UNC-2/Cav2, a voltage-gated calcium channel (VGCC) critical for proper neurotransmitter release. Additionally, the precise localization of RIMB-1/RBP requires presynaptic UNC-2/Cav2. These findings provide new mechanistic insight about how the interplay among multiple CAZ adaptor proteins and VGCC contributes to the organization of presynaptic AZ.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Canales de Calcio Tipo P/metabolismo , Canales de Calcio Tipo Q/metabolismo , Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...