Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
PLoS One ; 18(11): e0288532, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37943855

RESUMEN

The study aims to investigate how foreign direct investment (FDI) and green innovation (GI) impact environmental quality in South Asia. Moreover, this study examines the moderating role of GI between FDI and environmental sustainability. We use panel data from 1995 to 2018 for five South Asian nations namely, Pakistan, India, Bangladesh, Sri Lanka, and Nepal. For the empirical analysis, we used 1st generation cointegration like Pedroni and Kao, and 2nd generation cointegration tests like Westerlund. Moreover, for the long-run relationship, we employ fully modified least squares (FMOLS) and dynamic ordinary least squares (DOLS) estimation. The study's empirical results suggest that GI significantly enhances ecological sustainability in South Asian economies; however, FDI degrades the environmental quality. Furthermore, the results suggest that GI significantly moderates the nexus of FDI and ecological sustainability in South Asia. It is recommended that South Asian countries increase green innovation with FDI so that environmental quality can be assured for the region's sustainable development.


Asunto(s)
Dióxido de Carbono , Desarrollo Económico , Sur de Asia , Dióxido de Carbono/análisis , India , Bangladesh , Inversiones en Salud
2.
Proc Natl Acad Sci U S A ; 120(13): e2300054120, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36943885

RESUMEN

The receptor tyrosine kinase KIT and its ligand stem cell factor (SCF) are required for the development of hematopoietic stem cells, germ cells, and other cells. A variety of human cancers, such as acute myeloid leukemia, gastrointestinal stromal tumor, and mast cell leukemia, are driven by somatic gain-of-function KIT mutations. Here, we report cryo electron microscopy (cryo-EM) structural analyses of full-length wild-type and two oncogenic KIT mutants, which show that the overall symmetric arrangement of the extracellular domain of ligand-occupied KIT dimers contains asymmetric D5 homotypic contacts juxtaposing the plasma membrane. Mutational analysis of KIT reveals in D5 region an "Achilles heel" for therapeutic intervention. A ligand-sensitized oncogenic KIT mutant exhibits a more comprehensive and stable D5 asymmetric conformation. A constitutively active ligand-independent oncogenic KIT mutant adopts a V-shaped conformation solely held by D5-mediated contacts. Binding of SCF to this mutant fully restores the conformation of wild-type KIT dimers, including the formation of salt bridges responsible for D4 homotypic contacts and other hallmarks of SCF-induced KIT dimerization. These experiments reveal an unexpected structural plasticity of oncogenic KIT mutants and a therapeutic target in D5.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas c-kit , Humanos , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Ligandos , Microscopía por Crioelectrón , Proteínas Tirosina Quinasas Receptoras/metabolismo , Factor de Células Madre/genética , Factor de Células Madre/metabolismo , Fosforilación
3.
Proc Natl Acad Sci U S A ; 120(7): e2219128120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36745784

RESUMEN

While important insights were gained about how FGF21 and other endocrine fibroblast growth factors (FGFs) bind to Klotho proteins, the exact mechanism of Klotho/FGF receptor assembly that drives receptor dimerization and activation has not been elucidated. The prevailing dogma is that Klotho proteins substitute for the loss of heparan sulfate proteoglycan (HSPG) binding to endocrine FGFs by high-affinity binding of endocrine FGF molecules to Klotho receptors. To explore a potential role of HSPG in FGF21 signaling, we have analyzed the dynamic properties of FGF21-induced FGF21-ßKlotho-FGFR1c complexes on the surface of living wild-type (WT) or HSPG-deficient Chinese hamster ovary (CHO) cells by employing quantitative single-molecule fluorescence imaging analyses. Moreover, detailed analyses of FGF21 and FGF1 stimulation of cellular signaling pathways activated in WT or in HSPG-deficient CHO cells are also analyzed and compared. These experiments demonstrate that heparin is required for the formation of FGF21-ßKlotho-FGFR1c complexes on the cell membrane and that binding of heparin or HSPG to FGFR1c is essential for optimal FGF21 stimulation of FGFR1c activation, mitogen-activated protein kinase responses, and intracellular Ca2+ release. It is also shown that FGF1 binding stimulates assembly of ßKlotho and FGFR1c on cell membranes, resulting in endocytosis and degradation of ßKlotho. We conclude that heparin or HSPG is essential for FGF21 signaling and for regulation of ßKlotho cellular stability by acting as a coligand of FGFR1c.


Asunto(s)
Proteoglicanos de Heparán Sulfato , Proteínas Klotho , Cricetinae , Animales , Células CHO , Cricetulus , Heparina , Factor 1 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/fisiología
5.
Cell Rep ; 41(4): 111545, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36288716

RESUMEN

Cellular signaling by fibroblast growth factor receptors (FGFRs) is a highly regulated process mediated by specific interactions between distinct subsets of fibroblast growth factor (FGF) ligands and two FGFR isoforms generated by alternative splicing: an epithelial b- and mesenchymal c-isoforms. Here, we investigate the properties of a mini-protein, mb7, developed by an in silico design strategy to bind to the ligand-binding region of FGFR2. We describe structural, biophysical, and cellular analyses demonstrating that mb7 binds with high affinity to the c-isoforms of FGFR, resulting in inhibition of cellular signaling induced by a subset of FGFs that preferentially activate c-isoforms of FGFR. Notably, as mb7 blocks interaction between FGFR with Klotho proteins, it functions as an antagonist of the metabolic hormones FGF19 and FGF21, providing mechanistic insights and strategies for the development of therapeutics for diseases driven by aberrantly activated FGFRs.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Receptores de Factores de Crecimiento de Fibroblastos , Ligandos , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Isoformas de Proteínas/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Hormonas
6.
J Artif Organs ; 25(3): 245-253, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35235081

RESUMEN

Our bioabsorbable poly-L-lactic acid (PLLA) mesh implants containing collagen sponge are replaced with adipose tissue after implantation, and this is an innovative method for breast reconstruction. In this preliminary study, we investigated the formation of adipose tissue and evaluated the process via multimodal images in a porcine model using an implant aggregate to generate the larger adipose tissue. The implant aggregate consists of PLLA mesh implants containing collagen sponge and a poly-glycolic acid woven bag covering them. We inserted the implant aggregates under the porcine mammary glands. Magnetic resonance imaging (MRI), ultrasonography (USG), and 3-dimensional (3D) surface imaging and histological evaluations were performed to evaluate the formation of adipose tissue over time. The volume of the implant aggregate and the formed adipose tissue inside the implant aggregate could be evaluated over time via MRI. The space within the implant aggregate was not confirmed on USG due to the acoustic shadow of the PLLA threads. The change in volume was not confirmed precisely using 3D surface imaging. Histologically, the newly formed adipose tissue was confirmed on the skin side of the implant aggregate. This implant aggregate has the ability to regenerate adipose tissue, and MRI is an appropriate method for the evaluation of the volume of the implant aggregation and the formation of adipose tissue.


Asunto(s)
Implantes Absorbibles , Adipogénesis , Tejido Adiposo , Animales , Colágeno , Imagen por Resonancia Magnética , Porcinos
7.
Ann Surg Oncol ; 29(6): 3992-4000, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35175454

RESUMEN

INTRODUCTION: Denosumab has been shown to be highly effective at suppressing the progression of giant cell tumor of bone (GCTB). However, recent studies have observed a potential increased risk of local recurrence after surgery following the use of denosumab, raising concerns on the use of this agent against GCTB in combination with surgery. METHODS: We retrospectively reviewed the medical records of 234 patients with GCTB who were surgically treated at multiple institutions from 1990 to 2017. Patient background, tumor characteristics, treatment methods, local recurrence-free survival rate, distant metastasis rate, oncologic outcome, and limb function at final follow-up were analyzed and compared between cases treated with and without denosumab. RESULTS: The 3-year local recurrence-free survival rate was significantly lower in patients who underwent preoperative denosumab therapy (35.3%) compared with those treated without denosumab (79.9%) (P < 0.001). Among patients who were preoperatively treated with denosumab, those who had a local recurrence all underwent curettage surgery. CONCLUSIONS: Preoperative denosumab therapy in combination with curettage surgery was significantly associated with an increased risk of local recurrence in Campanacci grade 3 tumors. Our data suggest that clinicians seeing GCTB patients should be aware to this increased risk when planning preoperative denosumab therapy.


Asunto(s)
Conservadores de la Densidad Ósea , Neoplasias Óseas , Tumor Óseo de Células Gigantes , Conservadores de la Densidad Ósea/efectos adversos , Conservadores de la Densidad Ósea/uso terapéutico , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Neoplasias Óseas/cirugía , Legrado/efectos adversos , Denosumab/efectos adversos , Denosumab/uso terapéutico , Tumor Óseo de Células Gigantes/tratamiento farmacológico , Tumor Óseo de Células Gigantes/patología , Tumor Óseo de Células Gigantes/cirugía , Humanos , Recurrencia Local de Neoplasia/patología , Estudios Retrospectivos
8.
J Orthop Sci ; 27(3): 681-688, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33685766

RESUMEN

BACKGROUND: Due to the wide variations in location, size, local invasiveness, and treatment options, the complications associated with surgery for giant cell tumor of bone have been sporadically reported. For quality assessment, fundamental data based on large-scale surveys of complications under a universal evaluation system is needed. The Dindo-Clavien classification is an evaluation system for complications based on severity and required intervention type and is suitable for the evaluation of surgery in a heterogeneous cohort. METHODS: A multi-institutional retrospective survey of 141 patients who underwent surgery for giant cell tumor of bone in the extremity was performed. The incidence and risk factors of complications, type of intervention for complication control, and impact of complications on functional and oncological outcomes were analyzed using the Dindo-Clavien classification. RESULTS: Forty-six cases (32.6%) had one or more complications. Of them, 18 (12.8%), 11 (7.8%), and 17 (12.1%) cases were classified as Dindo-Clavien classification grade I, II, and III complications, respectively. There were no cases with grade IV or V complications. Progression in Campanacci grading (p = 0.04), resection (over curettage, p < 0.0001), reconstruction with prosthesis (p = 0.0007), and prolonged operative duration (p = 0.0002) were significant risk factors for complications. Complications had a significant impact on function (p < 0.0001). Differences in the impact of complication types and tumor location on function were confirmed. Complications had no impact on local recurrence and metastasis development. CONCLUSION: The Dindo-Clavien classification could provide fundamental information, under a uniform definition and classification system, on postoperative complications in patients with giant cell tumor of bone in terms of incidence, type of intervention for complication control, risk factors, and impact on functional outcome. The data are useful not only for preoperative evaluation for the risk of complications under specific conditions but also for quality assessment of surgery for giant cell tumor of bone.


Asunto(s)
Neoplasias Óseas , Tumor Óseo de Células Gigantes , Procedimientos Ortopédicos , Neoplasias Óseas/patología , Neoplasias Óseas/cirugía , Extremidades , Tumor Óseo de Células Gigantes/patología , Tumor Óseo de Células Gigantes/cirugía , Humanos , Incidencia , Procedimientos Ortopédicos/efectos adversos , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Estudios Retrospectivos , Factores de Riesgo
9.
Nature ; 600(7887): 148-152, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34819665

RESUMEN

The proto-oncogene ALK encodes anaplastic lymphoma kinase, a receptor tyrosine kinase that is expressed primarily in the developing nervous system. After development, ALK activity is associated with learning and memory1 and controls energy expenditure, and inhibition of ALK can prevent diet-induced obesity2. Aberrant ALK signalling causes numerous cancers3. In particular, full-length ALK is an important driver in paediatric neuroblastoma4,5, in which it is either mutated6 or activated by ligand7. Here we report crystal structures of the extracellular glycine-rich domain (GRD) of ALK, which regulates receptor activity by binding to activating peptides8,9. Fusing the ALK GRD to its ligand enabled us to capture a dimeric receptor complex that reveals how ALK responds to its regulatory ligands. We show that repetitive glycines in the GRD form rigid helices that separate the major ligand-binding site from a distal polyglycine extension loop (PXL) that mediates ALK dimerization. The PXL of one receptor acts as a sensor for the complex by interacting with a ligand-bound second receptor. ALK activation can be abolished through PXL mutation or with PXL-targeting antibodies. Together, these results explain how ALK uses its atypical architecture for its regulation, and suggest new therapeutic opportunities for ALK-expressing cancers such as paediatric neuroblastoma.


Asunto(s)
Quinasa de Linfoma Anaplásico/química , Quinasa de Linfoma Anaplásico/metabolismo , Ligandos , Quinasa de Linfoma Anaplásico/genética , Animales , Sitios de Unión , Cristalografía por Rayos X , Glicina/química , Glicina/metabolismo , Humanos , Lactante , Masculino , Ratones , Modelos Moleculares , Mutación , Células 3T3 NIH , Neuroblastoma , Dominios Proteicos , Multimerización de Proteína
10.
Sci Rep ; 11(1): 12803, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140581

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an intractable neurodegenerative disease. CD68-positive bone marrow (BM)-derived cells (BMDCs) accumulate in the pathological lesion in the SOD1(G93A) ALS mouse model after BM transplantation (BMT). Therefore, we investigated whether BMDCs can be applied as gene carriers for cell-based gene therapy by employing the accumulation of BMDCs. In ALS mice, YFP reporter signals were observed in 12-14% of white blood cells (WBCs) and in the spinal cord via transplantation of BM after lentiviral vector (LV) infection. After confirmation of gene transduction by LV with the CD68 promoter in 4-7% of WBCs and in the spinal cord of ALS mice, BM cells were infected with LVs expressing glutamate transporter (GLT) 1 that protects neurons from glutamate toxicity, driven by the CD68 promoter, which were transplanted into ALS mice. The treated mice showed improvement of motor behaviors and prolonged survival. Additionally, interleukin (IL)-1ß was significantly suppressed, and IL-4, arginase 1, and FIZZ were significantly increased in the mice. These results suggested that GLT1 expression by BMDCs improved the spinal cord environment. Therefore, our gene therapy strategy may be applied to treat neurodegenerative diseases such as ALS in which BMDCs accumulate in the pathological lesion by BMT.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Células de la Médula Ósea/metabolismo , Transportador 2 de Aminoácidos Excitadores/genética , Técnicas de Transferencia de Gen , Actividad Motora/fisiología , Esclerosis Amiotrófica Lateral/complicaciones , Animales , Biomarcadores/metabolismo , Trasplante de Médula Ósea , Supervivencia Celular , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación de la Expresión Génica , Terapia Genética , Gliosis/complicaciones , Gliosis/patología , Gliosis/fisiopatología , Ácido Glutámico/metabolismo , Lentivirus/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Neuronas Motoras/metabolismo , Atrofia Muscular/complicaciones , Atrofia Muscular/patología , Atrofia Muscular/fisiopatología , Degeneración Nerviosa/complicaciones , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Médula Espinal/metabolismo , Superóxido Dismutasa-1/metabolismo , Análisis de Supervivencia
11.
Acta Crystallogr D Struct Biol ; 77(Pt 5): 599-605, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33950016

RESUMEN

It is important to reveal the exact cause of poor diffractivity in protein crystals in order to determine the accurate structure of protein molecules. It is shown that there is a large amount of local strain in subgrains of glucose isomerase crystals even though the overall crystal quality is rather high, as shown by clear equal-thickness fringes in X-ray topography. Thus, a large stress is exerted on the subgrains of protein crystals, which could significantly lower the resistance of the crystals to radiation damage. It is also demonstrated that this local strain can be reduced through the introduction of dislocations in the crystal. This suggests that the introduction of dislocations in protein crystals can be effective in enhancing the crystal quality of subgrains of protein crystals. By exploiting this effect, the radiation damage in subgrains could be decreased, leading to the collection of X-ray diffraction data sets with high diffractivity.


Asunto(s)
Isomerasas Aldosa-Cetosa/química , Difracción de Rayos X/métodos , Conformación Proteica
12.
Commun Biol ; 4(1): 575, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990693

RESUMEN

Diabetic neuropathy is an incurable disease. We previously identified a mechanism by which aberrant bone marrow-derived cells (BMDCs) pathologically expressing proinsulin/TNF-α fuse with residential neurons to impair neuronal function. Here, we show that CD106-positive cells represent a significant fraction of short-term hematopoietic stem cells (ST-HSCs) that contribute to the development of diabetic neuropathy in mice. The important role for these cells is supported by the fact that transplantation of either whole HSCs or CD106-positive ST-HSCs from diabetic mice to non-diabetic mice produces diabetic neuronal dysfunction in the recipient mice via cell fusion. Furthermore, we show that transient episodic hyperglycemia produced by glucose injections leads to abnormal fusion of pathological ST-HSCs with residential neurons, reproducing neuropathy in nondiabetic mice. In conclusion, we have identified hyperglycemia-induced aberrant CD106-positive ST-HSCs underlie the development of diabetic neuropathy. Aberrant CD106-positive ST-HSCs constitute a novel therapeutic target for the treatment of diabetic neuropathy.


Asunto(s)
Comunicación Celular , Diabetes Mellitus Experimental/complicaciones , Neuropatías Diabéticas/patología , Células Madre Hematopoyéticas/citología , Hiperglucemia/complicaciones , Molécula 1 de Adhesión Celular Vascular/metabolismo , Animales , Trasplante de Médula Ósea , Fusión Celular , Células Cultivadas , Neuropatías Diabéticas/etiología , Neuropatías Diabéticas/metabolismo , Ratones , Ratones Endogámicos C57BL
13.
Sci Rep ; 11(1): 5653, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707490

RESUMEN

Exposure to moderate doses of ionizing radiation (IR), which is sufficient for causing skin injury, can occur during radiation therapy as well as in radiation accidents. Radiation-induced skin injury occasionally recovers, although its underlying mechanism remains unclear. Moderate-dose IR is frequently utilized for bone marrow transplantation in mice; therefore, this mouse model can help understand the mechanism. We had previously reported that bone marrow-derived cells (BMDCs) migrate to the epidermis-dermis junction in response to IR, although their role remains unknown. Here, we investigated the role of BMDCs in radiation-induced skin injury in BMT mice and observed that BMDCs contributed to skin recovery after IR-induced barrier dysfunction. One of the important mechanisms involved the action of CCL17 secreted by BMDCs on irradiated basal cells, leading to accelerated proliferation and recovery of apoptosis caused by IR. Our findings suggest that BMDCs are key players in IR-induced skin injury recovery.


Asunto(s)
Células de la Médula Ósea/patología , Queratinocitos/patología , Traumatismos por Radiación/patología , Animales , Células de la Médula Ósea/efectos de la radiación , Trasplante de Médula Ósea , Movimiento Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Quimiocina CCL17/metabolismo , Dermis/patología , Dermis/efectos de la radiación , Epidermis/patología , Epidermis/efectos de la radiación , Eliminación de Gen , Células HaCaT , Humanos , Queratinocitos/efectos de la radiación , Macrófagos/efectos de la radiación , Ratones Endogámicos C57BL , Ratones Transgénicos , Radiación Ionizante , Receptores CCR4/deficiencia , Receptores CCR4/metabolismo , Transducción de Señal/efectos de la radiación , Piel/patología , Piel/efectos de la radiación
14.
Sex Med ; 9(1): 100308, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33450520

RESUMEN

INTRODUCTION: Neuroprotection and neuroregeneration of cavernous nerve plexus by biological/bioengineering solutions may have the potential to maintain erectile function. AIMS: We evaluated the efficacy of a newly developed artificial nerve sheet using freeze-dried alginate (ALG) with polyglycolic acid (PGA) mesh in a rat model. METHODS: Bilateral cavernous nerves of male rats were excised to make an approximately 2 mm gap. A piece of the sponge-like freeze-dried sheet created by covalent cross-linking of ALG gel combined with PGA mesh was placed over the gap to cover each stump without any neural anastomosis. We compared erectile functions in the ALG groups with those in the sham group and the bilateral nerve excision group (n = 12, each). MAIN OUTCOME MEASURES: Main outcome measure was a rat model with cavernous nerve excision. RESULTS: All rats in the sham group had erection at 63 or 64 days, and mating behavior was confirmed in 10 rats (83.3%) of the sham group at 56 to 62 days. No erection and mating behavior was observed in the excision group. Ten of the 12 (83.3%) rats in the ALG group had a mating behavior and an erection, and the rates of erection and mating behavior were significantly higher in the ALG group than those in the excision group (P < .01, P < .01, respectively). Using a retrograde FluoroGold, the rate of FluoroGold positive pelvic ganglia proximal to the gap at 61 or 62 days was significantly higher in the ALG group than that in the excision group (P = .014). CONCLUSION: The results of our animal study have demonstrated that simply filling the cavernous nerve gap using the non-tubular artificial nerve sheets made of ALG with PGA mesh restored erectile function after cavernous nerve excision. Narita S, Obara T, Ishikawa N, et al. Cavernous Branched Nerve Regeneration Using Non-Tubular Artificial Nerve Sheets Using Freeze-Dried Alginate Gel Combined With Polyglycolic Acid Mesh in a Rat Model. Sex Med 2021;9:100308.

15.
Proc Natl Acad Sci U S A ; 117(50): 31800-31807, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257569

RESUMEN

The three members of the endocrine-fibroblast growth factor (FGF) family, FGF19, 21, and 23 are circulating hormones that regulate critical metabolic processes. FGF23 stimulates the assembly of a signaling complex composed of α-Klotho (KLA) and FGF receptor (FGFR) resulting in kinase activation, regulation of phosphate homeostasis, and vitamin D levels. Here we report that the C-terminal tail of FGF23, a region responsible for KLA binding, contains two tandem repeats, repeat 1 (R1) and repeat 2 (R2) that function as two distinct ligands for KLA. FGF23 variants with a single KLA binding site, FGF23-R1, FGF23-R2, or FGF23-wild type (WT) with both R1 and R2, bind to KLA with similar binding affinity and stimulate FGFR1 activation and MAPK response. R2 is flanked by two cysteines that form a disulfide bridge in FGF23-WT; disulfide bridge formation in FGF23-WT is dispensable for KLA binding and for cell signaling via FGFRs. We show that FGF23-WT stimulates dimerization and activation of a chimeric receptor molecule composed of the extracellular domain of KLA fused to the cytoplasmic domain of FGFR and employ total internal reflection fluorescence microscopy to visualize individual KLA molecules on the cell surface. These experiments demonstrate that FGF23-WT can act as a bivalent ligand of KLA in the cell membrane. Finally, an engineered Fc-R2 protein acts as an FGF23 antagonist offering new pharmacological intervention for treating diseases caused by excessive FGF23 abundance or activity.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Glucuronidasa/metabolismo , Multimerización de Proteína/fisiología , Sitios de Unión , Calcinosis/tratamiento farmacológico , Calcinosis/genética , Membrana Celular/metabolismo , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/uso terapéutico , Células HEK293 , Humanos , Hiperostosis Cortical Congénita/tratamiento farmacológico , Hiperostosis Cortical Congénita/genética , Hiperfosfatemia/tratamiento farmacológico , Hiperfosfatemia/genética , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/uso terapéutico , Proteínas Klotho , Mutación , Osteomalacia/tratamiento farmacológico , Osteomalacia/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Dominios Proteicos , Multimerización de Proteína/efectos de los fármacos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/uso terapéutico , Raquitismo Hipofosfatémico/tratamiento farmacológico , Raquitismo Hipofosfatémico/genética
16.
Mol Ther Methods Clin Dev ; 17: 657-665, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32322604

RESUMEN

Treating neuropathic pain is a critical clinical issue. Although numerous therapies have been proposed, effective treatments have not been established. Therefore, safe and feasible treatment methods are urgently needed. In this study, we investigated the therapeutic effects of autologous intrathecal administration of bone-marrow-derived mononuclear cells (MNCs) on neuropathic pain. We generated a mouse model of neuropathic pain by transecting the spinal nerve and evaluated neuropathic pain by measuring the mechanical threshold in the following 14 days. Mice in the MNC injection group had a higher mechanical threshold than those in the buffer group. We assessed the effect of MNC treatment on the dorsal root ganglia and spinal cord by immunohistochemistry, mRNA expression, and cytokine assay. The migration and accumulation of microglia were significantly suppressed in the MNC group, and the mRNA expression of inflammatory cytokines such as interleukin (IL)-6, IL-1ß, and tumor necrosis factor alpha (TNF-α) was markedly downregulated. Furthermore, MNC administration tended to suppress various cytokines in the cerebrospinal fluid of the model mice. In conclusion, our results suggest that intrathecal injection of MNCs relieves neuropathic pain and might be a promising cell therapy for the treatment of this condition.

17.
J Med Chem ; 63(10): 5324-5340, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32329617

RESUMEN

Janus kinases (JAKs) are non-receptor tyrosine kinases that are essential components of the JAK-STAT signaling pathway. Associated aberrant signaling is responsible for many forms of cancer and disorders of the immune system. The present focus is on the discovery of molecules that may regulate the activity of JAK2 by selective binding to the JAK2 pseudokinase domain, JH2. Specifically, the Val617Phe mutation in JH2 stimulates the activity of the adjacent kinase domain (JH1) resulting in myeloproliferative disorders. Starting from a non-selective screening hit, we have achieved the goal of discovering molecules that preferentially bind to the ATP binding site in JH2 instead of JH1. We report the design and synthesis of the compounds and binding results for the JH1, JH2, and JH2 V617F domains, as well as five crystal structures for JH2 complexes. Testing with a selective and non-selective JH2 binder on the autophosphorylation of wild-type and V617F JAK2 is also contrasted.


Asunto(s)
Amitrol (Herbicida)/química , Amitrol (Herbicida)/metabolismo , Activadores de Enzimas/química , Activadores de Enzimas/metabolismo , Janus Quinasa 2/química , Janus Quinasa 2/metabolismo , Animales , Células HEK293 , Humanos , Ligandos , Unión Proteica/fisiología , Células Sf9 , Difracción de Rayos X/métodos
18.
J Surg Case Rep ; 2020(2): rjz402, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32128110

RESUMEN

Plantar fibromatosis (PF) is a rare benign disease. Here we report bilateral PF accompanied by Dupuytren's contracture in the right palm. Magnetic resonance imaging was useful in diagnosing PF, although biopsy was needed to rule out hemangioma. As the patient had been receiving female hormone therapy since orchiectomy, there may be a possibility that estrogen accelerated the growth of PF. Local excision with a 1-cm margin was performed, followed by primary wound closure. Neither complication nor recurrence had occurred 6 months after the surgery.

19.
Mol Ther ; 28(1): 254-265, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31604678

RESUMEN

Despite the poor prognosis of spinal cord injury (SCI), effective treatments are lacking. Diverse factors regulate SCI prognosis. In this regard, microglia play crucial roles depending on their phenotype. The M1 phenotype exacerbates neuroinflammation, whereas the M2 phenotype promotes tissue repair and provides anti-inflammatory effects. Therefore, we compared the effects of M2 and M1 microglia transplantation on SCI. First, we established a method for effective induction of M1 or M2 microglia by exposure to granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukin (IL)-4, respectively, to be used for transplantation in a SCI mouse model. In the M2 microglia transplantation group, significant recovery of motor function was observed compared with the control and M1 groups. Elevated transcription of several neuroprotective molecules including mannose receptor C type 1 (Mrc1), arginase 1 (Arg1), and insulin-like growth factor 1 (Igf1) was observed. Moreover, intramuscular injection of FluoroRuby dye revealed recovery of retrograde axonal transport from the neuromuscular junction to upstream of the injured spinal cord only in the M2-transplanted group, although the number of migrated microglia were comparable in both M1 and M2 groups. In conclusion, our results indicated that M2 microglia obtained by IL-4 stimulation may be a promising candidate for cell transplantation therapy for SCI.


Asunto(s)
Trasplante de Células/métodos , Microglía/trasplante , Fenotipo , Recuperación de la Función , Traumatismos de la Médula Espinal/terapia , Animales , Animales Recién Nacidos , Conducta Animal , Células Cultivadas , Corteza Cerebral/citología , Modelos Animales de Enfermedad , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Interleucina-4/farmacología , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Actividad Motora , Resultado del Tratamiento
20.
Virus Res ; 271: 197680, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31398366

RESUMEN

Sapoviruses (SaVs) are enteric viruses that have been detected in human and animals previously; however, SaVs have not been identified in wild boar yet. Using a metagenomics approach, we identified SaVs in fecal samples of free-living wild boars in Japan for the first time. Six of the 48 specimens identified belonged to one genogroup (G)III, one GV and four GVI SaV sequence reads. We successfully determined complete genome of GV and GVI SaV strains using the long reverse transcription PCR strategy and the 5' rapid amplification of cDNA end method. Phylogenetic tree analysis and pairwise distance calculation revealed that GV SaV detected from wild boar was related to recently assigned GV.5 strains from pig, while GVI SaV was assigned to a new genotype within GVI. Moreover, wild boar may act as a reservoir for transmission of SaVs to the pig population (and vice versa) because GIII, GV, and GVI SaVs were all detected in pigs previously.


Asunto(s)
Genoma Viral , Genotipo , Sapovirus/clasificación , Exantema Vesicular del Cerdo/virología , Animales , Genómica/métodos , Japón , Filogenia , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...