Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nephrol Dial Transplant ; 39(2): 297-304, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37463050

RESUMEN

BACKGROUND: The use of cyclosporin A (CsA) is hampered by the development of nephrotoxicity including hypertension, which is partially dependent on renal sodium retention. To address this issue, we have investigated in vivo sodium reabsorption in different nephron segments of CsA-treated rats through micropuncture study coupled to expression analyses of sodium transporters. To translate the findings in rats to human, kidney-transplanted patients having CsA treatment were enrolled in the study. METHODS: Adult male Sprague-Dawley rats were treated with CsA (15 mg/kg/day) for 21 days, followed by micropuncture study and expression analyses of sodium transporters. CsA-treated kidney-transplanted patients with resistant hypertension were challenged with 50 mg furosemide. RESULTS: CsA-treated rats developed hypertension associated with reduced glomerular filtration rate. In vivo microperfusion study demonstrated a significant decrease in rate of absolute fluid reabsorption in the proximal tubule but enhanced sodium reabsorption in the thick ascending limb of Henle's loop (TAL). Expression analyses of sodium transporters at the same nephron segments further revealed a reduction in Na+-H+ exchanger isoform 3 (NHE3) in the renal cortex, while TAL-specific, furosemide-sensitive Na+-K+-2Cl- cotransporter (NKCC2) and NHE3 were significantly upregulated in the inner stripe of outer medulla. CsA-treated patients had a larger excretion of urinary NKCC2 protein at basal condition, and higher diuretic response to furosemide, showing increased FeNa+, FeCl- and FeCa2+ compared with both healthy controls and FK506-treated transplanted patients. CONCLUSION: Altogether, these findings suggest that up-regulation of NKCC2 along the TAL facilitates sodium retention and contributes to the development of CsA-induced hypertension.


Asunto(s)
Ciclosporina , Hipertensión , Adulto , Humanos , Masculino , Ratas , Animales , Ciclosporina/efectos adversos , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Regulación hacia Arriba , Furosemida , Ratas Sprague-Dawley , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Sodio/metabolismo , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo
2.
Clin Kidney J ; 16(6): 952-964, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37261007

RESUMEN

Hypertension is one of the major health problems leading to the development of cardiovascular diseases. Despite a rapid expansion in global hypertension prevalence, molecular mechanisms leading to hypertension are not fully understood largely due to the complexity of pathogenesis involving several factors. Salt intake is recognized as a leading determinant of blood pressure, since reduced dietary salt intake is related to lower morbidity and mortality, and hypertension in relation to cardiovascular events. Compared with salt-resistant populations, salt-sensitive individuals exhibit high sensitivity in blood pressure responses according to changes in salt intake. In this setting, the kidney plays a major role in the maintenance of blood pressure under the hormonal control of the renin-angiotensin-aldosterone system. In the present review, we summarize the current overview on the molecular mechanisms for modulation of blood pressure associated with renal ion channels/transporters including sodium-hydrogen exchanger isoform 3 (NHE3), Na+-K+-2Cl- cotransporter (NKCC2), sodium-chloride cotransporter (NCC), epithelial sodium channel (ENaC) and pendrin expressed in different nephron segments. In particular, recent studies on experimental animal models with deletion of renal ion channels led to the identification of several crucial physiological mechanisms and molecules involved in hypertension. These findings could further provide a potential for novel therapeutic approaches applicable on human patients with hypertension.

3.
J Am Soc Nephrol ; 33(10): 1864-1875, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35820785

RESUMEN

BACKGROUND: Mutations in SLC37A4, which encodes the intracellular glucose transporter G6PT, cause the rare glycogen storage disease type 1b (GSD1b). A long-term consequence of GSD1b is kidney failure, which requires KRT. The main protein markers of proximal tubule function, including NaPi2A, NHE3, SGLT2, GLUT2, and AQP1, are downregulated as part of the disease phenotype. METHODS: We utilized an inducible mouse model of GSD1b, TM-G6PT-/-, to show that glycogen accumulation plays a crucial role in altering proximal tubule morphology and function. To limit glucose entry into proximal tubule cells and thus to prevent glycogen accumulation, we administered an SGLT2-inhibitor, dapagliflozin, to TM-G6PT-/- mice. RESULTS: In proximal tubule cells, G6PT suppression stimulates the upregulation and activity of hexokinase-I, which increases availability of the reabsorbed glucose for intracellular metabolism. Dapagliflozin prevented glycogen accumulation and improved kidney morphology by promoting a metabolic switch from glycogen synthesis toward lysis and by restoring expression levels of the main proximal tubule functional markers. CONCLUSION: We provide proof of concept for the efficacy of dapagliflozin in preserving kidney function in GSD1b mice. Our findings could represent the basis for repurposing this drug to treat patients with GSD1b.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo I , Túbulos Renales Proximales , Ratones , Animales , Transportador 2 de Sodio-Glucosa/metabolismo , Túbulos Renales Proximales/metabolismo , Riñón/metabolismo , Modelos Animales de Enfermedad , Glucosa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/complicaciones , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Glucógeno/metabolismo
4.
Kidney Blood Press Res ; 47(7): 467-474, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35318291

RESUMEN

INTRODUCTION: Since the pandemic of COVID-19 started from December 2019, remarkable numbers of infections and deaths associated with COVID-19 have been recorded worldwide. End-stage kidney disease patients on dialysis are particularly at high risk of infections due to impairments in the innate and adaptive immune systems. Vaccination on dialysis patients (DP) still remains challenging because of the variable response and a low seroconversion rate compared with healthy participants (HP). Therefore, it is urgently necessary to establish a different vaccination strategy for DP, in terms of the dose and administration time. METHODS: Here, we report an observational prospective cohort study in which the immunogenic efficacies of SARS-CoV-2 vaccine BNT162b2 on DP and HP were evaluated by absolute quantification of IgG levels in the blood. RESULTS: DP showed a delayed seroconversion after two vaccine doses, with a low absolute IgG levels compared to HP. While HP reached complete seroconversion within 10 days from the administration of a second dose, only 76% of DP were seropositive. After the booster dose, DP had a strongly improved seroconversion rate as well as antibody levels, reaching 97% seropositivity and 50 times enhancement on antibody levels. DISCUSSION/CONCLUSION: These results prompt to suggest an additional vaccine dose in DP, reducing the interval of time from the second dose. Since limited data are available on immune response in DP overtime after three vaccine doses currently, our study is among the first reports demonstrating the improved seropositivity and IgG levels in DP after the booster vaccine dose.


Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Estudios de Cohortes , Humanos , Inmunidad , Inmunoglobulina G , Estudios Prospectivos , Diálisis Renal , SARS-CoV-2 , Vacunación
6.
Intractable Rare Dis Res ; 10(2): 95-101, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33996354

RESUMEN

EAST/SeSAME syndrome is a rare disease affecting the Central Nervous System (CNS), inner ear, and kidney. The syndrome is due to loss-of-function mutations in the KCNJ10 gene encoding the inward-rectifying potassium channel Kir4.1. EAST/SeSAME syndrome is mainly diagnosed during childhood with a tonic-clonic seizure being the usual first symptom. Due to a limited number of patients and recent identification of the disease, few data are available on the clinical progress of this disease in adulthood. In particular, neurologic and nephrological outcomes have not been reported. We present a case series of 4 adult patients harbouring homozygous missense mutation p.Ala167Val and homozygous frameshift mutations p.Asn232Glnfs*14 and p.Gly275Valfs*7. Effects of these mutations were predicted by in silico modelling and bioinformatic tools. Patients with truncating mutations were associated with more severe outcomes, both in tubulopathy severity and neurological symptomatology. Conversely, either missense or truncating mutations were correlated with similar severity of epilepsy, with a long free-of-event period up to 20 years old. No eGFR decline was documented. Modelling predicted that truncating mutations lead to complete Kir4.1 dysfunction. Finally, all patients had a mild increase in urinary protein excretion. Our study indicates that the prognosis of patients suffering from EAST/SeSAME syndrome is related to the severity of the mutation causing the disease. As predicted by in silico modelling, truncating mutations of KCNJ10 are associated with more severe disease, with recurrence of symptomatic hypokalemia and more severe neurological phenotype. The type of mutation should be considered for the therapy tailored to patients' phenotype.

7.
Sci Rep ; 10(1): 16383, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33009446

RESUMEN

Nephrogenic diabetes insipidus (NDI) is a rare tubulopathy characterized by urinary concentration defect due to renal resistance to vasopressin. Loss-of-function mutations of vasopressin V2 receptor (V2R) gene (AVPR2) is the most common cause of the disease. We have identified five novel mutations L86P, R113Q, C192S, M272R, and W323_I324insR from NDI-affected patients. Functional characterization of these mutants revealed that R113Q and C192S were normally localized at the basolateral membrane of polarized Madin-Darby Canine Kidney (MDCK) cells and presented proper glycosylation maturation. On the other side, L86P, M272R, and W323_I324insR mutants were retained in endoplasmic reticulum and exhibited immature glycosylation and considerably reduced stability. All five mutants were resistant to administration of vasopressin analogues as evaluated by defective response in cAMP release. In order to rescue the function of the mutated V2R, we tested VX-809, sildenafil citrate, ibuprofen and tolvaptan in MDCK cells. Among these, tolvaptan was effective in rescuing the function of M272R mutation, by both allowing proper glycosylation maturation, membrane sorting and response to dDAVP. These results show an important proof of concept for the use of tolvaptan in patients affected by M272R mutation of V2R causing NDI.


Asunto(s)
Diabetes Insípida Nefrogénica/genética , Mutación/efectos de los fármacos , Mutación/genética , Receptores de Vasopresinas/genética , Tolvaptán/farmacología , Animales , Antagonistas de los Receptores de Hormonas Antidiuréticas/farmacología , Células COS , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/genética , Chlorocebus aethiops , Perros , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/genética , Humanos , Células de Riñón Canino Madin Darby , Masculino , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Vasopresinas/genética
8.
Int J Mol Sci ; 21(5)2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32121487

RESUMEN

Increasing attention is more and more directed toward the thermostable Phosphotriesterase-Like-Lactonase (PLL) family of enzymes, for the efficient and reliable decontamination of toxic nerve agents. In the present study, the DNA Staggered Extension Process (StEP) technique was utilized to obtain new variants of PLL enzymes. Divergent homologous genes encoding PLL enzymes were utilized as templates for gene recombination and yielded a new variant of SsoPox from Saccharolobus solfataricus. The new mutant, V82L/C258L/I261F/W263A (4Mut) exhibited catalytic efficiency of 1.6 × 105 M-1 s-1 against paraoxon hydrolysis at 70°C, which is more than 3.5-fold and 42-fold improved in comparison with C258L/I261F/W263A (3Mut) and wild type SsoPox, respectively. 4Mut was also tested with chemical warfare nerve agents including tabun, sarin, soman, cyclosarin and VX. In particular, 4Mut showed about 10-fold enhancement in the hydrolysis of tabun and soman with respect to 3Mut. The crystal structure of 4Mut has been solved at the resolution of 2.8 Å. We propose that, reorganization of dimer conformation that led to increased central groove volume and dimer flexibility could be the major determinant for the improvement in hydrolytic activity in the 4Mut.


Asunto(s)
Arildialquilfosfatasa/química , Arildialquilfosfatasa/metabolismo , Proteínas Mutantes/metabolismo , Multimerización de Proteína , Sulfolobus solfataricus/enzimología , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/metabolismo , Dominio Catalítico , Dicroismo Circular , Evolución Molecular Dirigida , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Iones , Metales/química , Modelos Moleculares , Agentes Nerviosos/química , Hidrolasas de Triéster Fosfórico/química , Hidrolasas de Triéster Fosfórico/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología Estructural de Proteína , Relación Estructura-Actividad , Temperatura
9.
Int J Mol Sci ; 20(17)2019 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-31450703

RESUMEN

Mitogen-activated protein kinases (MAPKs) are intracellular molecules regulating a wide range of cellular functions, including proliferation, differentiation, apoptosis, cytoskeleton remodeling and cytokine production. MAPK activity has been shown in normal kidney, and its over-activation has been demonstrated in several renal diseases. The extracellular signal-regulated protein kinases (ERK 1,2) signalling pathway is the first described MAPK signaling. Intensive investigations have demonstrated that it participates in the regulation of ureteric bud branching, a fundamental process in establishing final nephron number; in addition, it is also involved in the differentiation of the nephrogenic mesenchyme, indicating a key role in mammalian kidney embryonic development. In the present manuscript, we show that ERK1,2 signalling mediates several cellular functions also in mature kidney, describing its role along the nephron and demonstrating whether it contributes to the regulation of ion channels and transporters implicated in acid-base and electrolytes homeostasis.


Asunto(s)
Equilibrio Ácido-Base , Electrólitos/metabolismo , Sistema de Señalización de MAP Quinasas , Nefronas/metabolismo , Equilibrio Hidroelectrolítico , Animales , Susceptibilidad a Enfermedades , Humanos , Túbulos Renales Colectores/metabolismo , Túbulos Renales Distales/metabolismo , Túbulos Renales Proximales/metabolismo , Asa de la Nefrona/metabolismo
10.
Chem Commun (Camb) ; 46(46): 8797-9, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-20959918

RESUMEN

We report here, for the first time, a biotemplated synthesis of uniform CdSe nanoparticle (4.1 ± 0.5 nm) and a fabrication of two-dimensional CdSe nanoparticles (over one micrometre) with nanometric gaps by cage-like protein, Listeria-Dps.


Asunto(s)
Compuestos de Cadmio/síntesis química , Proteínas de Unión al ADN/química , Nanopartículas/química , Compuestos de Selenio/síntesis química , Compuestos de Cadmio/química , Listeria/química , Tamaño de la Partícula , Compuestos de Selenio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...