Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
medRxiv ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38766235

RESUMEN

The BACTEC Mycobacteria Growth Indicator Tube (MGIT) machine is the standard globally for detecting viable mycobacteria in patients' sputum. Samples are observed for no longer than 42 days, at which point the sample is declared "negative" for tuberculosis (TB). This time to detection of bacterial growth, referred to as time-to-positivity (TTP), is increasingly of interest not solely as a diagnostic tool, but as a continuous biomarker wherein change in TTP over time can be used for comparing the bactericidal activity of different TB treatments. However, as a continuous measure, there are oddities in the distribution of TTP values observed, particularly at higher values. We explored whether there is evidence to suggest setting an upper limit of quantification (ULOQ M ) lower than the diagnostic limit of detection (LOD) using data from several TB-PACTS randomized clinical trials and PanACEA MAMS-TB. Across all trials, less than 7.1% of all weekly samples returned TTP measurements between 25 and 42 days. Further, the relative absolute prediction error (%) was highest in this range. When modeling with ULOQ M s of 25 and 30 days, the precision in estimation improved for 23 of 25 regimen-level slopes as compared to models using the diagnostic LOD while also improving the discrimination between regimens based on Bayesian posteriors. While TTP measurements between 25 days and the diagnostic LOD may be important for diagnostic purposes, TTP values in this range may not contribute meaningfully to its use as a quantitative measure, particularly when assessing treatment response, and may lead to under-powered clinical trials. Highlights: The BACTEC Mycobacteria Growth Indicator Tube (MGIT) machine is the STAND, PaMZard globally for the detection and diagnosis of tuberculosis.As MGIT machine use becomes more ubiquitous, its time-to-positivity (TTP) measures are increasingly of interest as a continuous biomarker for evaluating bactericidal activity of TB treatment regimens.Using data from seven previously published trials, this work highlights the evidence for setting a limit of quantification for quantitative analyses that is below the diagnostic limit of detection. TTP values near the upper limit of detection appear to be noisier and sparser, with precision improving for estimation of 23 of 25 regimen-specific rates of change in TTP when analyzed with a lower limit of quantification.While TTP measurements between 25 days and the diagnostic LOD may be important for diagnostic purposes, TTP values in this range may not contribute meaningfully to its use as a quantitative measure, particularly when assessing early treatment response.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38512417

RESUMEN

PURPOSE: Traumatic brain injury is the main reason for the emergency department visit of up to 3% of the patients and a major worldwide cause for morbidity and mortality. Current emergency management guidelines recommend close attention to patients taking oral anticoagulation but not patients on antiplatelet therapy. Recent studies have begun to challenge this. The aim of this study was to determine the impact of antiplatelet therapy and oral anticoagulation on traumatic intracranial hemorrhage. METHODS: Medical records of adult patients triaged with "head injury" as the main reason for emergency care were retrospectively reviewed from January 1, 2017, to December 31, 2017, and January 1, 2020, to December 31, 2021. Patients ≥ 18 years with head trauma were included. Odds ratio was calculated, and multiple logistic regression was performed. RESULTS: A total of 4850 patients with a median age of 70 years were included. Traumatic intracranial hemorrhage was found in 6.2% of the patients. The risk ratio for traumatic intracranial hemorrhage in patients on antiplatelet therapy was 2.25 (p < 0.001, 95% confidence interval 1.73-2.94) and 1.38 (p = 0.002, 95% confidence interval 1.05-1.84) in patients on oral anticoagulation compared to patients without mediations that affect coagulation. In binary multiple regression, antiplatelet therapy was associated with intracranial hemorrhage, but oral anticoagulation was not. CONCLUSION: This study shows that antiplatelet therapy is associated with a higher risk of traumatic intracranial hemorrhage compared to oral anticoagulation. Antiplatelet therapy should be given equal or greater consideration in the guidelines compared to anticoagulation therapy. Further studies on antiplatelet subtypes within the context of head trauma are recommended to improve the guidelines' diagnostic accuracy.

3.
ACS Mater Au ; 4(2): 162-173, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38496040

RESUMEN

The ability to customize medical choices according to an individual's genetic makeup and biomarker patterns marks a significant advancement toward overall improved healthcare for both individuals and society at large. By transitioning from the conventional one-size-fits-all approach to tailored treatments that can account for predispositions of different patient populations, nanomedicines can be customized to target the specific molecular underpinnings of a patient's disease, thus mitigating the risk of collateral damage. However, for these systems to reach their full potential, our understanding of how nano-based therapeutics behave within the intricate human body is necessary. Effective drug administration to the targeted organ or pathological niche is dictated by properties such as nanocarrier (NC) size, shape, and targeting abilities, where understanding how NCs change their properties when they encounter biomolecules and phenomena such as shear stress in flow remains a major challenge. This Review specifically focuses on vessel-on-a-chip technology that can provide increased understanding of NC behavior in blood and summarizes the specialized environment of the joint to showcase advanced tissue models as approaches to address translational challenges. Compared to conventional cell studies or animal models, these advanced models can integrate patient material for full customization. Combining such models with nanomedicine can contribute to making personalized medicine achievable.

4.
Antimicrob Agents Chemother ; 68(3): e0115723, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38259101

RESUMEN

Mycobacterium avium complex pulmonary disease is treated with an azithromycin, ethambutol, and rifampicin regimen, with limited efficacy. The role of rifampicin is controversial due to inactivity, adverse effects, and drug interactions. Here, we evaluated the efficacy of clofazimine as a substitute for rifampicin in an intracellular hollow-fiber infection model. THP-1 cells, which are monocytes isolated from peripheral blood from an acute monocytic leukemia patient, were infected with M. avium ATCC 700898 and exposed to a regimen of azithromycin and ethambutol with either rifampicin or clofazimine. Intrapulmonary pharmacokinetic profiles of azithromycin, ethambutol, and rifampicin were simulated. For clofazimine, a steady-state average concentration was targeted. Drug concentrations and bacterial densities were monitored over 21 days. Exposures to azithromycin and ethambutol were 20%-40% lower than targeted but within clinically observed ranges. Clofazimine exposures were 1.7 times higher than targeted. Until day 7, both regimens were able to maintain stasis. Thereafter, regrowth was observed for the rifampicin-containing regimen, while the clofazimine-containing regimen yielded a 2 Log10 colony forming unit (CFU) per mL decrease in bacterial load. The clofazimine regimen also successfully suppressed the emergence of macrolide tolerance. In summary, substitution of rifampicin with clofazimine in the hollow-fiber model improved the antimycobacterial activity of the regimen. Clofazimine-containing regimens merit investigation in clinical trials.


Asunto(s)
Enfermedades Pulmonares , Infección por Mycobacterium avium-intracellulare , Humanos , Rifampin/farmacología , Rifampin/uso terapéutico , Clofazimina/farmacología , Clofazimina/uso terapéutico , Etambutol/farmacología , Etambutol/uso terapéutico , Azitromicina/farmacología , Mycobacterium avium , Infección por Mycobacterium avium-intracellulare/tratamiento farmacológico , Quimioterapia Combinada , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Complejo Mycobacterium avium , Enfermedades Pulmonares/microbiología
5.
CPT Pharmacometrics Syst Pharmacol ; 13(2): 270-280, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37946698

RESUMEN

Pharmacokinetic (PK) studies in children are usually small and have ethical constraints due to the medical complexities of drawing blood in this special population. Often, population PK models for the drug(s) of interest are available in adults, and these models can be extended to incorporate the expected deviations seen in children. As a consequence, there is increasing interest in the use of optimal design methodology to design PK sampling schemes in children that maximize information using a small sample size and limited number of sampling times per dosing period. As a case study, we use the novel tuberculosis drug delamanid, and show how applications of optimal design methodology can result in highly efficient and model-robust designs in children for estimating PK parameters using a limited number of sampling measurements. Using developed population PK models based on available data from adults living with and without HIV, and limited data on children without HIV, competing designs for children living with HIV were derived and assessed based on robustness to model uncertainty.


Asunto(s)
Infecciones por VIH , Modelos Biológicos , Niño , Adulto , Humanos , Tamaño de la Muestra , Infecciones por VIH/tratamiento farmacológico
6.
ACS Infect Dis ; 10(1): 79-92, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38113038

RESUMEN

Microorganisms within the marine environment have been shown to be very effective sources of naturally produced antimicrobial peptides (AMPs). Several nonribosomal peptides were identified based on genome mining predictions of Streptomyces sp. H-KF8, a marine Actinomycetota isolated from a remote Northern Chilean Patagonian fjord. Based on these predictions, a series of eight peptides, including cyclic peptides, were designed and chemically synthesized. Six of these peptides showed antimicrobial activity. Mode of action studies suggest that two of these peptides potentially act on the cell membrane via a novel mechanism allowing the passage of small ions, resulting in the dissipation of the membrane potential. This study shows that though structurally similar peptides, determined by NMR spectroscopy, the incorporation of small sequence mutations results in a dramatic influence on their bioactivity including mode of action. The qualified hit sequence can serve as a basis for more potent AMPs in future studies.


Asunto(s)
Actinobacteria , Streptomyces , Péptidos Antimicrobianos , Streptomyces/genética , Streptomyces/química , Péptidos/farmacología , Péptidos/metabolismo , Péptidos Cíclicos/química
7.
CPT Pharmacometrics Syst Pharmacol ; 13(3): 374-385, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38102814

RESUMEN

Adequate power to identify an exposure-response relationship in a phase IIa clinical trial for pulmonary tuberculosis (TB) is important for dose selection and design of follow-up studies. Currently, it is not known what response marker provides the pharmacokinetic-pharmacodynamic (PK-PD) model more power to identify an exposure-response relationship. We simulated colony-forming units (CFU) and time-to-positivity (TTP) measurements for four hypothetical drugs with different activity profiles for 14 days. The power to identify exposure-response relationships when analyzing CFU, TTP, or combined CFU + TTP data was determined at 60 total participants, or with 25 out of 60 participants in the lowest and highest dosing groups (unbalanced design). For drugs with moderate bactericidal activity, power was low (<59%), irrespective of the data analyzed. Power was 1.9% to 29.4% higher when analyzing TTP data compared to CFU data. Combined analysis of CFU and TTP further improved the power, on average by 4.2%. For a drug with a medium-high activity, the total sample size needed to achieve 80% power was 136 for CFU, 72 for TTP, and 68 for combined CFU + TTP data. The unbalanced design improved the power by 16% over the balanced design. In conclusion, the power to identify an exposure-response relationship is low for TB drugs with moderate bactericidal activity or with a slow onset of activity. TTP provides the PK-PD model with more power to identify exposure-response relationships compared to CFU, and combined analysis or an unbalanced dosing group study design offers modest further improvement.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Pulmonar , Humanos , Antituberculosos/farmacología , Carga Bacteriana , Pruebas de Sensibilidad Microbiana , Tuberculosis Pulmonar/tratamiento farmacológico , Ensayos Clínicos Fase II como Asunto
8.
Antimicrob Agents Chemother ; 67(10): e0068323, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37768317

RESUMEN

Accumulating evidence supports the use of higher doses of rifampicin for tuberculosis (TB) treatment. Rifampicin is a potent inducer of metabolic enzymes and drug transporters, resulting in clinically relevant drug interactions. To assess the drug interaction potential of higher doses of rifampicin, we compared the effect of high-dose rifampicin (40 mg/kg daily, RIF40) and standard-dose rifampicin (10 mg/kg daily, RIF10) on the activities of major cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp). In this open-label, single-arm, two-period, fixed-order phenotyping cocktail study, adult participants with pulmonary TB received RIF10 (days 1-15), followed by RIF40 (days 16-30). A single dose of selective substrates (probe drugs) was administered orally on days 15 and 30: caffeine (CYP1A2), tolbutamide (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and digoxin (P-gp). Intensive pharmacokinetic blood sampling was performed over 24 hours after probe drug intake. In all, 25 participants completed the study. Geometric mean ratios (90% confidence interval) of the total exposure (area under the concentration versus time curve, RIF40 versus RIF10) for each of the probe drugs were as follows: caffeine, 105% (96%-115%); tolbutamide, 80% (74%-86%); omeprazole, 55% (47%-65%); dextromethorphan, 77% (68%-86%); midazolam, 62% (49%-78%), and 117% (105%-130%) for digoxin. In summary, high-dose rifampicin resulted in no additional effect on CYP1A2, mild additional induction of CYP2C9, CYP2C19, CYP2D6, and CYP3A, and marginal inhibition of P-gp. Existing recommendations on managing drug interactions with rifampicin can remain unchanged for the majority of co-administered drugs when using high-dose rifampicin. Clinical Trials registration number NCT04525235.


Asunto(s)
Citocromo P-450 CYP1A2 , Tuberculosis Pulmonar , Adulto , Humanos , Midazolam/uso terapéutico , Citocromo P-450 CYP2D6/metabolismo , Cafeína , Rifampin/uso terapéutico , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP3A/metabolismo , Dextrometorfano/uso terapéutico , Tolbutamida , Citocromo P-450 CYP2C9/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Omeprazol , Interacciones Farmacológicas , Tuberculosis Pulmonar/tratamiento farmacológico , Digoxina/uso terapéutico
10.
Int J Antimicrob Agents ; 61(6): 106813, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37037318

RESUMEN

BACKGROUND: Higher doses of rifampicin for tuberculosis have been shown to improve early bactericidal activity (EBA) and at the same time increase the intolerability due to high exposure at the beginning of treatment. To support dose optimisation of rifampicin, this study investigated new and innovative staggered dosing of rifampicin using clinical trial simulations to minimise tolerability problems and still achieve good efficacy. METHODS: Rifampicin population pharmacokinetics and time-to-positivity models were applied to data from patients receiving 14 days of daily 10-50 mg/kg rifampicin to characterise the exposure-response relationship. Furthermore, clinical trial simulations of rifampicin exposure were performed following four different staggered dosing scenarios. The simulated exposure after 35 mg/kg was used as a relative comparison for efficacy. Tolerability was derived from a previous model-based analysis relating exposure at day 7 and the probability of having adverse events. RESULTS: The linear relationship between rifampicin exposure and bacterial killing rate in sputum indicated that the maximum rifampicin EBA was not reached at doses up to 50 mg/kg. Clinical trial simulations of a staggered dosing strategy starting the treatment at a lower dose (20 mg/kg) for 7 days followed by a higher dose (40 mg/kg) predicted a lower initial exposure with lower probability of tolerability problems and better EBA compared with a regimen of 35 mg/kg daily. CONCLUSIONS: Staggered dosing of 20 mg/kg for 7 days followed by 40 mg/kg is predicted to reduce tolerability while maintaining exposure levels associated with better efficacy.


Asunto(s)
Rifampin , Tuberculosis , Humanos , Antituberculosos/uso terapéutico , Rifampin/uso terapéutico , Esputo/microbiología , Tuberculosis/tratamiento farmacológico
11.
Antibiotics (Basel) ; 12(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37107064

RESUMEN

Linezolid is used off-label for treatment of central nervous system infections. However, its pharmacokinetics and target attainment in cranial cerebrospinal fluid (CSF) in tuberculous meningitis patients is unknown. This study aimed to predict linezolid cranial CSF concentrations and assess attainment of pharmacodynamic (PD) thresholds (AUC:MIC of >119) in plasma and cranial CSF of adults and children with tuberculous meningitis. A physiologically based pharmacokinetic (PBPK) model was developed to predict linezolid cranial CSF profiles based on reported plasma concentrations. Simulated steady-state PK curves in plasma and cranial CSF after linezolid doses of 300 mg BID, 600 mg BID, and 1200 mg QD in adults resulted in geometric mean AUC:MIC ratios in plasma of 118, 281, and 262 and mean cranial CSF AUC:MIC ratios of 74, 181, and 166, respectively. In children using ~10 mg/kg BID linezolid, AUC:MIC values at steady-state in plasma and cranial CSF were 202 and 135, respectively. Our model predicts that 1200 mg per day in adults, either 600 mg BID or 1200 mg QD, results in reasonable (87%) target attainment in cranial CSF. Target attainment in our simulated paediatric population was moderate (56% in cranial CSF). Our PBPK model can support linezolid dose optimization efforts by simulating target attainment close to the site of TBM disease.

12.
Int J Antimicrob Agents ; 61(5): 106775, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36893811

RESUMEN

A milestone in the development of novel antituberculosis drugs is the demonstration of early bactericidal activity (EBA) in a phase IIa clinical trial. The significant variability in measurements of bacterial load complicates data analysis in these trials. A systematic review and evaluation of methods for determination of EBA in pulmonary tuberculosis studies was undertaken. Bacterial load quantification biomarkers, reporting intervals, calculation methods, statistical testing, and handling of negative culture results were extracted. In total, 79 studies were identified in which EBA was determined. Colony-forming units on solid culture media and/or time-to-positivity in liquid media were the biomarkers used most often, reported in 72 (91%) and 34 (43%) studies, respectively. Twenty-two different reporting intervals were presented, and 12 different calculation methods for EBA were identified. Statistical testing for a significant EBA compared with no change was performed in 54 (68%) studies, and between-group testing was performed in 32 (41%) studies. Negative culture result handling was discussed in 34 (43%) studies. Notable variation was found in the analysis methods and reporting of EBA studies. A standardized and clearly reported analysis method, accounting for different levels of variability in the data, could aid the generalization of study results and facilitate comparison between drugs/regimens.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Pulmonar , Tuberculosis , Humanos , Factores de Tiempo , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/microbiología , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Tuberculosis/tratamiento farmacológico , Esputo/microbiología
13.
Front Pharmacol ; 14: 1067295, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998606

RESUMEN

Biomarkers are quantifiable characteristics of biological processes. In Mycobacterium tuberculosis, common biomarkers used in clinical drug development are colony forming unit (CFU) and time-to-positivity (TTP) from sputum samples. This analysis aimed to develop a combined quantitative tuberculosis biomarker model for CFU and TTP biomarkers for assessing drug efficacy in early bactericidal activity studies. Daily CFU and TTP observations in 83 previously patients with uncomplicated pulmonary tuberculosis after 7 days of different rifampicin monotherapy treatments (10-40 mg/kg) from the HIGHRIF1 study were included in this analysis. The combined quantitative tuberculosis biomarker model employed the Multistate Tuberculosis Pharmacometric model linked to a rifampicin pharmacokinetic model in order to determine drug exposure-response relationships on three bacterial sub-states using both the CFU and TTP data simultaneously. CFU was predicted from the MTP model and TTP was predicted through a time-to-event approach from the TTP model, which was linked to the MTP model through the transfer of all bacterial sub-states in the MTP model to a one bacterial TTP model. The non-linear CFU-TTP relationship over time was well predicted by the final model. The combined quantitative tuberculosis biomarker model provides an efficient approach for assessing drug efficacy informed by both CFU and TTP data in early bactericidal activity studies and to describe the relationship between CFU and TTP over time.

14.
Br J Clin Pharmacol ; 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36692865

RESUMEN

AIM: Delamanid is a novel drug for the treatment of drug-resistant tuberculosis, manufactured as 50-mg solid and 25-mg dispersible tablets. We evaluated the effects of dispersing the 50-mg tablet, focusing on the relative bioavailability. METHODS: Delamanid, 50-mg tablets administered dispersed vs swallowed whole, was investigated in a phase I, four-period, crossover study. Two of three dose strengths of delamanid (25, 50 or 100 mg) were given to healthy adult participants, in both whole and dispersed forms, with a 7-day washout period. Blood samples were collected over 168 h after each dose. Delamanid and its metabolite DM-6705 were analysed with a validated liquid chromatography tandem mass spectrometry assay. The pharmacokinetics of both analytes were analysed using nonlinear mixed-effect modelling. Palatability and acceptability were determined using a standardized questionnaire. RESULTS: Twenty-four participants completed the study. The bioavailability of dispersed tablets was estimated to be 107% of whole tablets, with a 90% confidence interval of 99.7-114%, fulfilling bioequivalence criteria. The two formulations were not significantly different regarding either bioavailability or its variability. Bioavailability increased at lower doses, by 34% (26-42%) at 50 mg and by 74% (64-86%) at 25 mg, relative to 100 mg. The majority of participants (93%) found the dispersed formulation acceptable in palatability across all delamanid doses. CONCLUSIONS: Dispersed 50-mg delamanid tablets have similar bioavailability to tablets swallowed whole in adult volunteers. This can be an option for children and other patients who cannot swallow whole tablets, improving access to treatment.

15.
Respiration ; 102(2): 83-100, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36516792

RESUMEN

Although tuberculosis (TB) is preventable and curable, the lengthy treatment (generally 6 months), poor patient adherence, high inter-individual variability in pharmacokinetics (PK), emergence of drug resistance, presence of comorbidities, and adverse drug reactions complicate TB therapy and drive the need for new drugs and/or regimens. Hence, new compounds are being developed, available drugs are repurposed, and the dosing of existing drugs is optimized, resulting in the largest drug development portfolio in TB history. This review highlights a selection of clinically available drug candidates that could be part of future TB regimens, including bedaquiline, delamanid, pretomanid, linezolid, clofazimine, optimized (high dose) rifampicin, rifapentine, and para-aminosalicylic acid. The review covers drug development history, preclinical data, PK, and current clinical development.


Asunto(s)
Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Humanos , Antituberculosos/uso terapéutico , Tuberculosis/tratamiento farmacológico , Linezolid/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
16.
Eur Respir J ; 61(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36328357

RESUMEN

BACKGROUND: Suboptimal exposure to antituberculosis (anti-TB) drugs has been associated with unfavourable treatment outcomes. We aimed to investigate estimates and determinants of first-line anti-TB drug pharmacokinetics in children and adolescents at a global level. METHODS: We systematically searched MEDLINE, Embase and Web of Science (1990-2021) for pharmacokinetic studies of first-line anti-TB drugs in children and adolescents. Individual patient data were obtained from authors of eligible studies. Summary estimates of total/extrapolated area under the plasma concentration-time curve from 0 to 24 h post-dose (AUC0-24) and peak plasma concentration (C max) were assessed with random-effects models, normalised with current World Health Organization-recommended paediatric doses. Determinants of AUC0-24 and C max were assessed with linear mixed-effects models. RESULTS: Of 55 eligible studies, individual patient data were available for 39 (71%), including 1628 participants from 12 countries. Geometric means of steady-state AUC0-24 were summarised for isoniazid (18.7 (95% CI 15.5-22.6) h·mg·L-1), rifampicin (34.4 (95% CI 29.4-40.3) h·mg·L-1), pyrazinamide (375.0 (95% CI 339.9-413.7) h·mg·L-1) and ethambutol (8.0 (95% CI 6.4-10.0) h·mg·L-1). Our multivariate models indicated that younger age (especially <2 years) and HIV-positive status were associated with lower AUC0-24 for all first-line anti-TB drugs, while severe malnutrition was associated with lower AUC0-24 for isoniazid and pyrazinamide. N-acetyltransferase 2 rapid acetylators had lower isoniazid AUC0-24 and slow acetylators had higher isoniazid AUC0-24 than intermediate acetylators. Determinants of C max were generally similar to those for AUC0-24. CONCLUSIONS: This study provides the most comprehensive estimates of plasma exposures to first-line anti-TB drugs in children and adolescents. Key determinants of drug exposures were identified. These may be relevant for population-specific dose adjustment or individualised therapeutic drug monitoring.


Asunto(s)
Antituberculosos , Isoniazida , Niño , Adolescente , Humanos , Preescolar , Antituberculosos/uso terapéutico , Isoniazida/uso terapéutico , Pirazinamida/uso terapéutico , Etambutol/uso terapéutico , Rifampin/uso terapéutico
18.
AIDS ; 36(14): 2077-2079, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36111542

RESUMEN

Dolutegravir 50 mg is registered for use in children weighing 20-40 kg. This approval is based on data from an African paediatric cohort, and no pharmacokinetic data was available from children outside of Africa. This study provides further evidence of the effective use of dolutegravir 50 mg in children weighing 20 to 40 kg by showing that concentration data gathered in clinical practice shows adequate concentration levels in Dutch children without a safety signal.


Asunto(s)
Infecciones por VIH , Humanos , Niño , Infecciones por VIH/tratamiento farmacológico , Compuestos Heterocíclicos con 3 Anillos/farmacocinética , Oxazinas , Piridonas , África del Sur del Sahara
19.
Clin Pharmacokinet ; 61(11): 1585-1593, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36180816

RESUMEN

BACKGROUND AND INTRODUCTION: The dispersible tablet formulation (DTF) of pretomanid has been developed to facilitate future use in children. This work aimed to assess the pharmacokinetics (PK) and relative bioavailability of the DTF compared to the marketed formulation (MF) and the potential influence of dose. METHODS: Pretomanid DTF was investigated in a single-dose, randomized, four-period, cross-over study, with 7 days of washout between doses. Forty-eight healthy volunteers were enrolled and randomized into one of two panels to receive doses either in the fasted state or after a high-fat meal. Each volunteer received doses of 10, 50, and 200 mg DTF, and 200 mg MF pretomanid. Blood samples for pharmacokinetic assessment were drawn following a rich schedule up to 96 h after each single dose. The study data from the panel receiving the high-fat meal were analyzed using a nonlinear mixed-effects modeling approach, and all data were characterized with noncompartmental methods. RESULTS: A one-compartment model with first-order elimination and absorption through a transit compartment captured the mean and variability of the observed pretomanid concentrations with acceptable precision. No significant difference in bioavailability was found between formulations. The mean absorption time for the DTF was typically 137% (86-171%) of that for the MF. The bioavailability was found to be dose dependent with a small positive and larger negative correlation under fed and fasted conditions, respectively. CONCLUSION: Using data from a relative bioavailability study in healthy adult volunteers, a mathematical model has been developed to inform dose selection for the investigation of pretomanid in children using the new dispersible tablet formulation. Under fed conditions and at the currently marketed adult dose of 200 mg, the formulation type was found to influence the absorption rate, but not the bioavailability. The bioavailability of the DTF was slightly positively correlated with doses when administered with food. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04309656, first posted on 16 March 2020.


Asunto(s)
Ayuno , Adulto , Niño , Humanos , Estudios Cruzados , Área Bajo la Curva , Comprimidos , Disponibilidad Biológica , Administración Oral , Equivalencia Terapéutica
20.
Open Forum Infect Dis ; 9(8): ofac372, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36043179

RESUMEN

Background: The M2 metabolite of bedaquiline causes QT-interval prolongation, making electrocardiogram (ECG) monitoring of patients receiving bedaquiline for drug-resistant tuberculosis necessary. The objective of this study was to determine the relationship between M2 exposure and Fridericia-corrected QT (QTcF)-interval prolongation and to explore suitable ECG monitoring strategies for 6-month bedaquiline treatment. Methods: Data from the PROBeX study, a prospective observational cohort study, were used to characterize the relationship between M2 exposure and QTcF. Established nonlinear mixed-effects models were fitted to pharmacokinetic and ECG data. In a virtual patient population, QTcF values were simulated for scenarios with and without concomitant clofazimine. ECG monitoring strategies to identify patients who need to interrupt treatment (QTcF > 500 ms) were explored. Results: One hundred seventy patients were included, providing 1131 bedaquiline/M2 plasma concentrations and 1702 QTcF measurements; 2.1% of virtual patients receiving concomitant clofazimine had QTcF > 500 ms at any point during treatment (0.7% without concomitant clofazimine). With monthly monitoring, almost all patients with QTcF > 500 ms were identified by week 12; after week 12, patients were predominantly falsely identified as QTcF > 500 ms due to stochastic measurement error. Following a strategy with monitoring before treatment and at weeks 2, 4, 8, and 12 in simulations with concomitant clofazimine, 93.8% of all patients who should interrupt treatment were identified, and 26.4% of all interruptions were unnecessary (92.1% and 32.2%, respectively, without concomitant clofazimine). Conclusions: Our simulations enable an informed decision for a suitable ECG monitoring strategy by weighing the risk of missing patients with QTcF > 500 ms and that of interrupting bedaquiline treatment unnecessarily. We propose ECG monitoring before treatment and at weeks 2, 4, 8, and 12 after starting bedaquiline treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...