Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Vet Sci ; 8: 681951, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34239914

RESUMEN

The objective of this placebo-controlled, double-blind, randomized study (designed according to evidence-based medicine standards) was to determine the effect of 30-day administration of powdered brown algae, Ascophyllum nodosum (ProDen PlaqueOff, SwedenCare AB, Sweden), on saliva metabolomes in dogs. Sixty client-owned dogs underwent professional dental cleaning and were randomly subdivided into two groups receiving daily powdered brown algae A. nodosum, or a placebo (microcrystalline cellulose in powder), adjusted to their bodyweight. After a comprehensive oral health assessment and professional dental cleaning, which were both performed under general anesthesia, clinical assessments for gingivitis, plaque, and calculus were conducted. Saliva samples were collected at Day 0 and Day 30 of supplementation. Whole saliva is a mixed fluid that is derived predominantly from the major salivary glands but it also contains numerous other constituents. Additionally, its composition varies on whether salivary secretion is basal or stimulated. Authors put efforts to avoid contamination of saliva by other constituents and character of saliva was basal. Quadrupole time-of-flight (QTOF) mass spectrometer was used to conduct analysis of the saliva samples. Metabolomic analyses identified clear changes after 30 days of supplementation, and the direction of these changes was completely different than in dogs that received a placebo treatment during the same period. The positive clinical effect of 30 days of A. nodosum supplementation on oral health status in dogs described in previous publication combined with the absence of some metabolites in the saliva of dogs on day 30 of supplementation suggest that brown algae inhibit or turn off some pathways that could enhance plaque or calculus development. The exact mechanism of A. nodosum is still unclear and warrants further study.

2.
Front Vet Sci ; 5: 168, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30109236

RESUMEN

The objective of this placebo-controlled, double-blind, randomized study (designed according to evidence based medicine standards) was to determine the effect of 90-day administration of edible treats containing the brown algae, Ascophyllum nodosum, on plaque and dental calculus accumulation on the teeth of dogs, as well as on other parameters characterizing canine oral health status, including: plaque index (PI), calculus index (CI), oral health index (OHI), gingival bleeding index (GBI), and volatile sulfur compound (VSC) concentration. Sixty client-owned dogs, including Japanese chin, miniature Schnauzer, Chihuahua, Pomeranian, and West Highland White Terrier (WHWT) breeds, underwent professional dental cleaning and were randomly subdivided into two groups receiving daily edible treats containing the brown algae A. nodosum, or placebo, adjusted to their bodyweight. After a comprehensive oral health assessment, including a professional dental cleaning, which were both performed under general anesthesia, clinical assessments of PI, CI, OHI, GBI, and VSC concentration were performed under sedation after 30, 60, and 90 days of treatment. Oral administration of edible treats containing A. nodosum significantly improved PI, CI, and VSC concentration, compared with the placebo-treated group. The consumption of edible treats containing A. nodosum efficiently decreased plaque and calculus accumulation in the investigated dogs. Dogs treated with A. nodosum also exhibited significantly lower concentrations of VSC and better oral health status (e.g., OHI and GBI) than those in the placebo-control group.

3.
Br J Nutr ; 97(6): 1117-27, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17433125

RESUMEN

Lactic acid bacteria are probiotics widely used in functional food products, with a variety of beneficial effects reported. Recently, intense research has been carried out to provide insight into the mechanism of the action of probiotic bacteria. We have used gene array technology to map the pattern of changes in the global gene expression profile of the host caused by Lactobacillus administration. Affymetrix microarrays were applied to comparatively characterize differences in gene transcription in the distal ileum of normal microflora (NMF) and germ-free (GF) mice evoked by oral administration of two Lactobacillus strains used in fermented dairy products today - Lactobacillus paracasei ssp. paracasei F19 (L. F19) or Lactobacillus acidophilus NCFB 1748. We show that feeding either of the two strains caused very similar effects on the transcriptional profile of the host. Both L. F19 and L. acidophilus NCFB 1748 evoked a complex response in the gut, reflected by differential regulation of a number of genes involved in essential physiological functions such as immune response, regulation of energy homeostasis and host defence. Notably, the changes in intestinal gene expression caused by Lactobacillus were different in the mice raised under GF v. NMF conditions, underlying the complex and dynamic nature of the host-commensal relationship. Differential expression of an array of genes described in this report evokes novel hypothesis of possible interactions between the probiotic bacteria and the host organism and warrants further studies to evaluate the functional significance of these transcriptional changes on the metabolic profile of the host.


Asunto(s)
Metabolismo Energético/genética , Intestino Delgado/inmunología , Intestino Delgado/metabolismo , Lactobacillus , Probióticos , Animales , Perfilación de la Expresión Génica/métodos , Homeostasis/genética , Masculino , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Fenotipo , Reacción en Cadena de la Polimerasa/métodos , ARN Mensajero/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...