Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(12): e0279562, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36580476

RESUMEN

Caldicellulosiruptor is a genus of thermophilic to hyper-thermophilic microorganisms that express and secrete an arsenal of enzymes degrading lignocellulosic biomasses into fermentable sugars. Because of this distinguished feature, strains of Caldicellulosiruptor have been considered as promising candidates for consolidated bioprocessing. Although a few Caldicellulosiruptor strains with industrially relevant characteristics have been isolated to date, it is apparent that further improvement of the strains is essential for industrial application. The earlier identification of the HaeIII-like restriction-modification system in C. bescii strain DSM 6725 has formed the basis for genetic methods with the aim to improve the strain's lignocellulolytic activity and ethanol production. In this study, a novel SfaNI-like restriction-modification system was identified in Caldicellulosiruptor sp. strain BluCon085, consisting of an endonuclease and two methyltransferases that recognize the reverse-complement sequences 5'-GATGC-3' and 5'-GCATC-3'. Methylation of the adenine in both sequences leads to an asymmetric methylation pattern in the genomic DNA of strain BluCon085. Proteins with high percentage of identity to the endonuclease and two methyltransferases were identified in the genomes of C. saccharolyticus strain DSM 8903, C. naganoensis strain DSM 8991, C. changbaiensis strain DSM 26941 and Caldicellulosiruptor sp. strain F32, suggesting that a similar restriction-modification system may be active also in these strains and respective species. We show that methylation of plasmid and linear DNA by the identified methyltransferases, obtained by heterologous expression in Escherichia coli, is sufficient for successful transformation of Caldicellulosiruptor sp. strain DIB 104C. The genetic engineering toolbox developed in this study forms the basis for rational strain improvement of strain BluCon085, a derivative from strain DIB 104C with exceptionally high L-lactic acid production. The toolbox may also work for other species of the genus Caldicellulosiruptor that have so far not been genetically tractable.


Asunto(s)
Caldicellulosiruptor , Enzimas de Restricción-Modificación del ADN , Ingeniería Genética , Metiltransferasas
2.
Biotechnol Biofuels Bioprod ; 15(1): 44, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501875

RESUMEN

BACKGROUND: Consolidated bioprocessing (CBP) of lignocellulosic biomass to L-lactic acid using thermophilic cellulolytic/hemicellulolytic bacteria provides a promising solution for efficient lignocellulose conversion without the need for additional cellulolytic/hemicellulolytic enzymes. Most studies on the mesophilic and thermophilic CBP of lignocellulose to lactic acid concentrate on cultivation of non-cellulolytic mesophilic and thermophilic bacteria at temperatures of 30-55 °C with external addition of cellulases/hemicellulases for saccharification of substrates. RESULTS: L-Lactic acid was generated by fermenting microcrystalline cellulose or lignocellulosic substrates with a novel thermophilic anaerobic bacterium Caldicellulosiruptor sp. DIB 104C without adding externally produced cellulolytic/hemicellulolytic enzymes. Selection of this novel bacterium strain for lactic acid production is described as well as the adaptive evolution towards increasing the L-lactic acid concentration from 6 to 70 g/l on microcrystalline cellulose. The evolved strains grown on microcrystalline cellulose show a maximum lactic acid production rate of 1.0 g/l*h and a lactic acid ratio in the total organic fermentation products of 96 wt%. The enantiomeric purity of the L-lactic acid generated is 99.4%. In addition, the lactic acid production by these strains on several other types of cellulose and lignocellulosic feedstocks is also reported. CONCLUSIONS: The evolved strains originating from Caldicellulosiruptor sp. DIB 104C were capable of producing unexpectedly large amounts of L-lactic acid from microcrystalline cellulose in fermenters. These strains produce L-lactic acid also from lignocellulosic feedstocks and thus represent an ideal starting point for development of a highly integrated commercial L-lactic acid production process from such feedstocks.

3.
Biotechnol Biofuels ; 6(1): 31, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23448304

RESUMEN

BACKGROUND: Consolidated bioprocessing (CBP) of lignocellulosic biomass to ethanol using thermophilic bacteria provides a promising solution for efficient lignocellulose conversion without the need for additional cellulolytic enzymes. Most studies on the thermophilic CBP concentrate on co-cultivation of the thermophilic cellulolytic bacterium Clostridium thermocellum with non-cellulolytic thermophilic anaerobes at temperatures of 55°C-60°C. RESULTS: We have specifically screened for cellulolytic bacteria growing at temperatures >70°C to enable direct conversion of lignocellulosic materials into ethanol. Seven new strains of extremely thermophilic anaerobic cellulolytic bacteria of the genus Caldicellulosiruptor and eight new strains of extremely thermophilic xylanolytic/saccharolytic bacteria of the genus Thermoanaerobacter isolated from environmental samples exhibited fast growth at 72°C, extensive lignocellulose degradation and high yield ethanol production on cellulose and pretreated lignocellulosic biomass. Monocultures of Caldicellulosiruptor strains degraded up to 89-97% of the cellulose and hemicellulose polymers in pretreated biomass and produced up to 72 mM ethanol on cellulose without addition of exogenous enzymes. In dual co-cultures of Caldicellulosiruptor strains with Thermoanaerobacter strains the ethanol concentrations rose 2- to 8.2-fold compared to cellulolytic monocultures. A co-culture of Caldicellulosiruptor DIB 087C and Thermoanaerobacter DIB 097X was particularly effective in the conversion of cellulose to ethanol, ethanol comprising 34.8 mol% of the total organic products. In contrast, a co-culture of Caldicellulosiruptor saccharolyticus DSM 8903 and Thermoanaerobacter mathranii subsp. mathranii DSM 11426 produced only low amounts of ethanol. CONCLUSIONS: The newly discovered Caldicellulosiruptor sp. strain DIB 004C was capable of producing unexpectedly large amounts of ethanol from lignocellulose in fermentors. The established co-cultures of new Caldicellulosiruptor strains with new Thermoanaerobacter strains underline the importance of using specific strain combinations for high ethanol yields. These co-cultures provide an efficient CBP pathway for ethanol production and represent an ideal starting point for development of a highly integrated commercial ethanol production process.

4.
Appl Environ Microbiol ; 76(16): 5652-7, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20581186

RESUMEN

Acidilobus saccharovorans is an anaerobic, organotrophic, thermoacidophilic crenarchaeon isolated from a terrestrial hot spring. We report the complete genome sequence of A. saccharovorans, which has permitted the prediction of genes for Embden-Meyerhof and Entner-Doudoroff pathways and genes associated with the oxidative tricarboxylic acid cycle. The electron transfer chain is branched with two sites of proton translocation and is linked to the reduction of elemental sulfur and thiosulfate. The genomic data suggest an important role of the order Acidilobales in thermoacidophilic ecosystems whereby its members can perform a complete oxidation of organic substrates, closing the anaerobic carbon cycle.


Asunto(s)
Crenarchaeota/clasificación , Crenarchaeota/genética , Genoma Arqueal , Manantiales de Aguas Termales/microbiología , Crenarchaeota/aislamiento & purificación , ADN de Archaea/química , ADN de Archaea/genética , Transporte de Electrón , Redes y Vías Metabólicas/genética , Datos de Secuencia Molecular , Oxidación-Reducción , Análisis de Secuencia de ADN
5.
Appl Environ Microbiol ; 75(13): 4580-8, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19447963

RESUMEN

Thermococcus species are widely distributed in terrestrial and marine hydrothermal areas, as well as in deep subsurface oil reservoirs. Thermococcus sibiricus is a hyperthermophilic anaerobic archaeon isolated from a well of the never flooded oil-bearing Jurassic horizon of a high-temperature oil reservoir. To obtain insight into the genome of an archaeon inhabiting the oil reservoir, we have determined and annotated the complete 1,845,800-base genome of T. sibiricus. A total of 2,061 protein-coding genes have been identified, 387 of which are absent in other members of the order Thermococcales. Physiological features and genomic data reveal numerous hydrolytic enzymes (e.g., cellulolytic enzymes, agarase, laminarinase, and lipases) and metabolic pathways, support the proposal of the indigenous origin of T. sibiricus in the oil reservoir, and explain its survival over geologic time and its proliferation in this habitat. Indeed, in addition to proteinaceous compounds known previously to be present in oil reservoirs at limiting concentrations, its growth was stimulated by cellulose, agarose, and triacylglycerides, as well as by alkanes. Two polysaccharide degradation loci were probably acquired by T. sibiricus from thermophilic bacteria following lateral gene transfer events. The first, a "saccharolytic gene island" absent in the genomes of other members of the order Thermococcales, contains the complete set of genes responsible for the hydrolysis of cellulose and beta-linked polysaccharides. The second harbors genes for maltose and trehalose degradation. Considering that agarose and laminarin are components of algae, the encoded enzymes and the substrate spectrum of T. sibiricus indicate the ability to metabolize the buried organic matter from the original oceanic sediment.


Asunto(s)
ADN de Archaea/genética , Aceites Combustibles/microbiología , Genoma Arqueal , Análisis de Secuencia de ADN , Thermococcus/genética , Thermococcus/metabolismo , Alcanos/metabolismo , Proteínas Arqueales/genética , Metabolismo de los Hidratos de Carbono , Celulosa/metabolismo , ADN de Archaea/química , Enzimas/genética , Redes y Vías Metabólicas/genética , Datos de Secuencia Molecular , Sefarosa/metabolismo , Thermococcus/aislamiento & purificación , Triglicéridos/metabolismo
6.
J Biol Chem ; 282(14): 10639-46, 2007 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-17277357

RESUMEN

The Ni-Fe carbon monoxide (CO) dehydrogenase II (CODHII(Ch)) from the anaerobic CO-utilizing hydrogenogenic bacterium Carboxydothermus hydrogenoformans catalyzes the oxidation of CO, presumably at the Ni-(micro(2)S)-Fe1 subsite of the [Ni-4S-5S] cluster in the active site. The CO oxidation mechanism proposed on the basis of several CODHII(Ch) crystal structures involved the apical binding of CO at the nickel ion and the activation of water at the Fe1 ion of the cluster. To understand how CO interacts with the active site, we have studied the reactivity of the cluster with potassium cyanide and analyzed the resulting type of nickel coordination by x-ray absorption spectroscopy. Cyanide acts as a competitive inhibitor of reduced CODHII(Ch) with respect to the substrate CO and is therefore expected to mimic the substrate. It inhibits the enzyme reversibly, forming a nickel cyanide. In this reaction, one of the four square-planar sulfur ligands of nickel is replaced by the carbon atom of cyanide, suggesting removal of the micro(2)S from the Ni-(micro(2)S)-Fe1 subsite. Upon reactivation of the inhibited enzyme, cyanide is released, and the square-planar coordination of nickel by 4S ligands is recovered, which includes the reformation of the Ni-(micro(2)S)-Fe1 bridge. The results are summarized in a model of the CO oxidation mechanism at the [Ni-4Fe-5S] active site cluster of CODHII(Ch) from C. hydrogenoformans.


Asunto(s)
Aldehído Oxidorreductasas/química , Proteínas Bacterianas/química , Clostridium/enzimología , Hierro/química , Complejos Multienzimáticos/química , Cianuro de Potasio/química , Absorciometría de Fotón , Aldehído Oxidorreductasas/antagonistas & inhibidores , Aldehído Oxidorreductasas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Sitios de Unión , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Hierro/metabolismo , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/metabolismo , Níquel/química , Níquel/metabolismo , Oxidación-Reducción , Azufre/química , Azufre/metabolismo
7.
Proc Natl Acad Sci U S A ; 103(39): 14331-6, 2006 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-16983091

RESUMEN

The cobalt- and iron-containing corrinoid iron-sulfur protein (CoFeSP) is functional in the acetyl-CoA (Ljungdahl-Wood) pathway of autotrophic carbon fixation in various bacteria and archaea, where it is essential for the biosynthesis of acetyl-CoA. CoFeSP acts in two methylation reactions: the transfer of a methyl group from methyltransferase (MeTr)-bound methyltetrahydrofolate to the cob(I)amide of CoFeSP and the transfer of the methyl group of methyl-cob(III)amide to the reduced Ni-Ni-[4Fe-4S] active site cluster A of acetyl-CoA synthase (ACS). We have solved the crystal structure of as-isolated CoFeSP(Ch) from the CO-oxidizing hydrogenogenic bacterium Carboxydothermus hydrogenoformans at 1.9-A resolution. The heterodimeric protein consists of two tightly interacting subunits with pseudo-twofold symmetry. The large CfsA subunit comprises three domains, of which the N-terminal domain binds the [4Fe-4S] cluster, the middle domain is a (betaalpha)(8)-barrel, and the C-terminal domain shows an open fold and binds Cobeta-aqua-(5,6-dimethylbenzimidazolylcobamide) in a "base-off" state without a protein ligand at the cobalt ion. The small CfsB subunit also displays a (betaalpha)(8)-barrel fold and interacts with the upper side of the corrin macrocycle. Structure-based alignments show that both (betaalpha)(8)-barrel domains are related to the MeTr in the acetyl-CoA pathway and to the folate domain of methionine synthase. We suggest that the C-terminal domain of the large subunit is the mobile element that allows the necessary interaction of CoFeSP(Ch) with the active site of ACS(Ch) and the methyltetrahydrofolate carrying MeTr. The conformation in the crystal structure shields the two open coordinations of cobalt and likely represents a resting state.


Asunto(s)
Acetilcoenzima A/biosíntesis , Corrinoides/química , Proteínas Hierro-Azufre/química , Metiltransferasas/química , Peptococcaceae/química , Coenzimas/metabolismo , Cristalografía por Rayos X , Modelos Biológicos , Estructura Secundaria de Proteína , Relación Estructura-Actividad
8.
J Am Chem Soc ; 126(17): 5382-7, 2004 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-15113209

RESUMEN

During the past two years, crystal structures of Cu- and Mo-containing carbon monoxide dehydrogenases (CODHs) and Ni- and Fe-containing CODHs have been reported. The active site of CODHs from anaerobic bacteria (cluster C) is composed of Ni, Fe, and S for which crystallographic studies of the enzymes from Carboxydothermus hydrogenoformans, Rhodospirillum rubrum, and Moorella thermoaceticarevealed structural similarities in the overall protein fold but showed substantial differences in the essential Ni coordination environment. The [Ni-4Fe-5S] cluster C in the fully catalytically competent dithionite-reduced CODH II from C. hydrogenoformans (CODHII(Ch)) at 1.6 A resolution contains a characteristic mu(2)-sulfido ligand between Ni and Fe1, resulting in a square-planar ligand arrangement with four S-ligands at the Ni ion. In contrast, the [Ni-4Fe-4S] clusters C in CO-treated CODH from R. rubrum resolved at 2.8 A and in CO-treated acetyl-CoA synthase/CODH complex from M. thermoacetica at 2.2 and 1.9 A resolution, respectively, do not contain the mu(2)-sulfido ligand between Ni and Fe1 and display dissimilar geometries at the Ni ion. The [Ni-4Fe-4S] cluster is composed of a cubane [Ni-3Fe-4S] cluster linked to a mononuclear Fe site. The described coordination geometries of the Ni ion in the [Ni-4Fe-4S] cluster of R. rubrum and M. thermoacetica deviate from the square-planar ligand geometry in the [Ni-4Fe-5S] cluster C of CODHII(Ch). In addition, the latter was converted into a [Ni-4Fe-4S] cluster under specific conditions. The objective of this study was to elucidate the relationship between the structure of cluster C in CODHII(Ch) and the functionality of the protein. We have determined the CO oxidation activity of CODHII(Ch) under different conditions of crystallization, prepared crystals of the enzyme in the presence of dithiothreitol or dithionite as reducing agents under an atmosphere of N(2) or CO, and solved the corresponding structures at 1.1 to 1.6 A resolutions. Fully active CODHII(Ch) obtained after incubation of the enzyme with dithionite under N(2) revealed the [Ni-4Fe-5S] cluster. Short treatment of the enzyme with CO in the presence of dithiothreitol resulted in a catalytically competent CODHII(Ch) with a CO-reduced [Ni-4Fe-5S] cluster, but a prolonged treatment with CO caused the loss of CO-oxidizing activity and revealed a [Ni-4Fe-4S] cluster, which did not contain a mu(2)-S. These data suggest that the [Ni-4Fe-4S] cluster of CODHII(Ch) is an inactivated decomposition product originating from the [Ni-4Fe-5S] cluster.


Asunto(s)
Aldehído Oxidorreductasas/química , Monóxido de Carbono/química , Hierro/química , Complejos Multienzimáticos/química , Níquel/química , Azufre/química , Bacterias/enzimología , Sitios de Unión , Ditiotreitol/química , Modelos Moleculares , Conformación Molecular , Nitrógeno/química , Factores de Tiempo , Difracción de Rayos X
9.
Proc Natl Acad Sci U S A ; 101(2): 446-51, 2004 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-14699043

RESUMEN

In anaerobic microorganisms employing the acetyl-CoA pathway, acetyl-CoA synthase (ACS) and CO dehydrogenase (CODH) form a complex (ACS/CODH) that catalyzes the synthesis of acetyl-CoA from CO, a methyl group, and CoA. Previously, a [4Fe-4S] cubane bridged to a copper-nickel binuclear site (active site cluster A of the ACS component) was identified in the ACS(Mt)/CODH(Mt) from Moorella thermoacetica whereas another study revealed a nickel-nickel site in the open form of ACS(Mt), and a zink-nickel site in the closed form. The ACS(Ch) of the hydrogenogenic bacterium Carboxydothermus hydrogenoformans was found to exist as an 82.2-kDa monomer as well as in a 1:1 molar complex with the 73.3-kDa CODHIII(Ch). Homogeneous ACS(Ch) and ACS(Ch)/CODHIII(Ch) catalyzed the exchange between [1-(14)C]acetyl-CoA and (12)CO with specific activities of 2.4 or 5.9 micromol of CO per min per mg, respectively, at 70 degrees C and pH 6.0. They also catalyzed the synthesis of acetyl-CoA from CO, methylcobalamin, corrinoid iron-sulfur protein, and CoA with specific activities of 0.14 or 0.91 micromol of acetyl-CoA formed per min per mg, respectively, at 70 degrees C and pH 7.3. The functional cluster A of ACS(Ch) contains a Ni-Ni-[4Fe-4S] site, in which the positions proximal and distal to the cubane are occupied by Ni ions. This result is apparent from a positive correlation of the Ni contents and negative correlations of the Cu or Zn contents with the acetyl-CoA/CO exchange activities of different preparations of monomeric ACS(Ch), a 2.2-A crystal structure of the dithionite-reduced monomer in an open conformation, and x-ray absorption spectroscopy.


Asunto(s)
Acetato CoA Ligasa/metabolismo , Bacterias Anaerobias/enzimología , Proteínas Hierro-Azufre/metabolismo , Níquel/metabolismo , Acetato CoA Ligasa/química , Catálisis , Proteínas Hierro-Azufre/química , Níquel/química , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA