Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38844435

RESUMEN

Melanosomal pH is important for the synthesis of melanin as the rate-limiting enzyme, tyrosinase, is very pH-sensitive. The soluble adenylyl cyclase (sAC) signaling pathway was recently identified as a regulator of melanosomal pH in melanocytes; however, the melanosomal proteins critical for sAC-dependent regulation of melanosomal pH were undefined. We now systematically examine four well-characterized melanosomal membrane proteins to determine whether any of them are required for sAC-dependent regulation of melanosomal pH. We find that OA1, OCA2, and SLC45A2 are dispensable for sAC-dependent regulation of melanosomal pH. In contrast, TPC2 activity is required for sAC-dependent regulation of melanosomal pH and melanin synthesis. In addition, activation of TPC2 by NAADP-AM rescues melanosomal pH alkalinization and reduces melanin synthesis following pharmacologic or genetic inhibition of sAC signaling. These studies establish TPC2 as a critical melanosomal protein for sAC-dependent regulation of melanosomal pH and pigmentation.

2.
Sci Bull (Beijing) ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38644130

RESUMEN

Colorectal cancer (CRC), a widespread malignancy, is closely associated with tumor microenvironmental hydrogen peroxide (H2O2) levels. Some clinical trials targeting H2O2 for cancer treatment have revealed its paradoxical role as a promoter of cancer progression. Investigating the dynamics of cancer cell H2O2 eustress at the single-cell level is crucial. In this study, non-contact hopping probe mode scanning ion conductance microscopy (HPICM) with high-sensitive Pt-functionalized nanoelectrodes was employed to measure dynamic extracellular to intracellular H2O2 gradients in individual colorectal cancer Caco-2 cells. We explored the relationship between cellular mechanical properties and H2O2 gradients. Exposure to 0.1 or 1 mmol/L H2O2 eustress increased the extracellular to intracellular H2O2 gradient from 0.3 to 1.91 or 3.04, respectively. Notably, cellular F-actin-dependent stiffness increased at 0.1 mmol/L but decreased at 1 mmol/L H2O2 eustress. This H2O2-induced stiffness modulated AKT activation positively and glutathione peroxidase 2 (GPX2) expression negatively. Our findings unveil the failure of some H2O2-targeted therapies due to their ineffectiveness in generating H2O2, which instead acts eustress to promote cancer cell survival. This research also reveals the complex interplay between physical properties and biochemical signaling in cancer cells' antioxidant defense, illuminating the exploitation of H2O2 eustress for survival at the single-cell level. Inhibiting GPX and/or catalase (CAT) enhances the cytotoxic activity of H2O2 eustress against CRC cells, which holds significant promise for developing innovative therapies targeting cancer and other H2O2-related inflammatory diseases.

3.
Cells ; 12(19)2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37830615

RESUMEN

A cell's mechanical properties have been linked to cancer development, motility and metastasis and are therefore an attractive target as a universal, reliable cancer marker. For example, it has been widely published that cancer cells show a lower Young's modulus than their non-cancerous counterparts. Furthermore, the effect of anti-cancer drugs on cellular mechanics may offer a new insight into secondary mechanisms of action and drug efficiency. Scanning ion conductance microscopy (SICM) offers a nanoscale resolution, non-contact method of nanomechanical data acquisition. In this study, we used SICM to measure the nanomechanical properties of melanoma cell lines from different stages with increasing metastatic ability. Young's modulus changes following treatment with the anti-cancer drugs paclitaxel, cisplatin and dacarbazine were also measured, offering a novel perspective through the use of continuous scan mode SICM. We found that Young's modulus was inversely correlated to metastatic ability in melanoma cell lines from radial growth, vertical growth and metastatic phases. However, Young's modulus was found to be highly variable between cells and cell lines. For example, the highly metastatic cell line A375M was found to have a significantly higher Young's modulus, and this was attributed to a higher level of F-actin. Furthermore, our data following nanomechanical changes after 24 hour anti-cancer drug treatment showed that paclitaxel and cisplatin treatment significantly increased Young's modulus, attributed to an increase in microtubules. Treatment with dacarbazine saw a decrease in Young's modulus with a significantly lower F-actin corrected total cell fluorescence. Our data offer a new perspective on nanomechanical changes following drug treatment, which may be an overlooked effect. This work also highlights variations in cell nanomechanical properties between previous studies, cancer cell lines and cancer types and questions the usefulness of using nanomechanics as a diagnostic or prognostic tool.


Asunto(s)
Antineoplásicos , Melanoma , Humanos , Actinas , Cisplatino/farmacología , Cisplatino/uso terapéutico , Microscopía de Fuerza Atómica/métodos , Melanoma/tratamiento farmacológico , Antineoplásicos/farmacología , Dacarbazina/farmacología , Paclitaxel/farmacología
4.
Curr Protoc ; 3(5): e774, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37154440

RESUMEN

Located in the basal epidermis and hair follicles, melanocytes of the integument are responsible for its coloration through production of melanin pigments. Melanin is produced in a type of lysosome-related-organelle (LRO) called the melanosome. In humans, this skin pigmentation acts as an ultraviolet radiation filter. Abnormalities in the division of melanocytes are quite common, with potentially oncogenic growth usually followed by cell senescence producing benign naevi (moles), or occasionally, melanoma. Therefore, melanocytes are a useful model for studying both cellular senescence and melanoma, as well as many other aspects of biology such as pigmentation, organelle biogenesis and transport, and the diseases affecting these mechanisms. Melanocytes for use in basic research can be obtained from a range of sources, including surplus postoperative skin or from congenic murine skin. Here we describe methods to isolate and culture melanocytes from both human and murine skin (including the preparation of mitotically inactive keratinocytes for use as feeder cells). We also describe a high-throughput transfection protocol for human melanocytes and melanoma cells. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Primary explantation of human melanocytic cells Basic Protocol 2: Preparation of keratinocyte feeder cells for use in the primary culture of mouse melanocytes Basic Protocol 3: Primary culture of melanocytes from mouse skin Basic Protocol 4: Transfection of human melanocytes and melanoma cells.


Asunto(s)
Melanoma , Nevo Pigmentado , Neoplasias Cutáneas , Humanos , Animales , Ratones , Melaninas , Rayos Ultravioleta , Melanocitos , Melanoma/genética , Transfección
5.
Nanoscale ; 13(13): 6558-6568, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33885535

RESUMEN

Mechanical properties of living cells determined by cytoskeletal elements play a crucial role in a wide range of biological functions. However, low-stress mapping of mechanical properties with nanoscale resolution but with a minimal effect on the fragile structure of cells remains difficult. Scanning Ion-Conductance Microscopy (SICM) for quantitative nanomechanical mapping (QNM) is based on intrinsic force interactions between nanopipettes and samples and has been previously suggested as a promising alternative to conventional techniques. In this work, we have provided an alternative estimation of intrinsic force and stress and demonstrated the possibility to perform qualitative and quantitative analysis of cell nanomechanical properties of a variety of living cells. Force estimation on decane droplets with well-known elastic properties, similar to living cells, revealed that the forces applied using a nanopipette are much smaller than in the case using atomic force microscopy. We have shown that we can perform nanoscale topography and QNM using a scanning procedure with no detectable effect on live cells, allowing long-term QNM as well as detection of nanomechanical properties under drug-induced alterations of actin filaments and microtubulin.


Asunto(s)
Fenómenos Mecánicos , Microscopía de Fuerza Atómica
6.
J Cell Biol ; 220(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33886957

RESUMEN

Membrane transport carriers fuse with target membranes through engagement of cognate vSNAREs and tSNAREs on each membrane. How vSNAREs are sorted into transport carriers is incompletely understood. Here we show that VAMP7, the vSNARE for fusing endosome-derived tubular transport carriers with maturing melanosomes in melanocytes, is sorted into transport carriers in complex with the tSNARE component STX13. Sorting requires either recognition of VAMP7 by the AP-3δ subunit of AP-3 or of STX13 by the pallidin subunit of BLOC-1, but not both. Consequently, melanocytes expressing both AP-3δ and pallidin variants that cannot bind their respective SNARE proteins are hypopigmented and fail to sort BLOC-1-dependent cargo, STX13, or VAMP7 into transport carriers. However, SNARE binding does not influence BLOC-1 function in generating tubular transport carriers. These data reveal a novel mechanism of vSNARE sorting by recognition of redundant sorting determinants on a SNARE complex by an AP-3-BLOC-1 super-complex.


Asunto(s)
Complejo 3 de Proteína Adaptadora/genética , Subunidades delta de Complexo de Proteína Adaptadora/genética , Proteínas del Tejido Nervioso/genética , Proteínas Qa-SNARE/genética , Proteínas R-SNARE/genética , Endosomas/genética , Humanos , Melanocitos/metabolismo , Melanosomas/genética , Transporte de Proteínas/genética
7.
J Invest Dermatol ; 141(7): 1810-1818.e6, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33549605

RESUMEN

Melanin synthesis occurs within a specialized organelle called the melanosome. Traditional methods for measuring melanin levels rely on the detection of chemical degradation products of melanin by high-performance liquid chromatography. Although these methods are robust, they are unable to distinguish between melanin synthesis and degradation and are best suited to measure melanin changes over long periods of time. We developed a method that actively measures both eumelanin and pheomelanin synthesis by fate tracing [U-13C] L-tyrosine using liquid chromatography-mass spectrometry. Using this method, we confirmed the previous reports of the differences in melanin synthesis between melanocytes derived from individuals with different skin colors and MC1R genotype and uncovered new information regarding the differential de novo synthesis of eumelanin and pheomelanin, also called mixed melanogenesis. We also revealed that distinct mechanisms that alter melanosomal pH differentially induce new eumelanin and pheomelanin synthesis. Finally, we revealed that the synthesis of L-3,4-dihydroxyphenylalanine, an important metabolite of L-tyrosine, is differentially controlled by multiple factors. Because L-tyrosine fate tracing is compatible with untargeted liquid chromatography-mass spectrometry‒based metabolomics, this approach enables the broad measurement of cellular metabolism in combination with melanin metabolism, and we anticipate that this approach will shed new light on multiple mechanisms of melanogenesis.


Asunto(s)
Espectrometría de Masas/métodos , Melaninas/análisis , Melanosomas/metabolismo , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Animales , Isótopos de Carbono/análisis , Células Cultivadas , Cromatografía Líquida de Alta Presión/métodos , Humanos , Melaninas/biosíntesis , Ratones , Ratones Noqueados , Cultivo Primario de Células , Receptor de Melanocortina Tipo 1/genética , Pigmentación de la Piel , Tirosina/análisis , Tirosina/química , Tirosina/metabolismo
8.
Mol Biol Cell ; 31(24): 2687-2702, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32966160

RESUMEN

SLC45A2 encodes a putative transporter expressed primarily in pigment cells. SLC45A2 mutations cause oculocutaneous albinism type 4 (OCA4) and polymorphisms are associated with pigmentation variation, but the localization, function, and regulation of SLC45A2 and its variants remain unknown. We show that SLC45A2 localizes to a cohort of mature melanosomes that only partially overlaps with the cohort expressing the chloride channel OCA2. SLC45A2 expressed ectopically in HeLa cells localizes to lysosomes and raises lysosomal pH, suggesting that in melanocytes SLC45A2 expression, like OCA2 expression, results in the deacidification of maturing melanosomes to support melanin synthesis. Interestingly, OCA2 overexpression compensates for loss of SLC45A2 expression in pigmentation. Analyses of SLC45A2- and OCA2-deficient mouse melanocytes show that SLC45A2 likely functions later during melanosome maturation than OCA2. Moreover, the light skin-associated SLC45A2 allelic F374 variant restores only moderate pigmentation to SLC45A2-deficient melanocytes due to rapid proteasome-dependent degradation resulting in lower protein expression levels in melanosomes than the dark skin-associated allelic L374 variant. Our data suggest that SLC45A2 maintains melanosome neutralization that is initially orchestrated by transient OCA2 activity to support melanization at late stages of melanosome maturation, and that a common allelic variant imparts reduced activity due to protein instability.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Melanocitos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Pigmentación de la Piel/fisiología , Animales , Antígenos de Neoplasias/fisiología , Proteínas Portadoras/metabolismo , Línea Celular , Canales de Cloruro/metabolismo , Células HeLa , Humanos , Lisosomas/metabolismo , Masculino , Melanosomas/metabolismo , Proteínas de Transporte de Membrana/fisiología , Ratones , Pigmentación/fisiología , Estabilidad Proteica , Piel/metabolismo
9.
Nat Commun ; 11(1): 3495, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32661310

RESUMEN

Cell biologists generally consider that microtubules and actin play complementary roles in long- and short-distance transport in animal cells. On the contrary, using melanosomes of melanocytes as a model, we recently discovered that the motor protein myosin-Va works with dynamic actin tracks to drive long-range organelle dispersion in opposition to microtubules. This suggests that in animals, as in yeast and plants, myosin/actin can drive long-range transport. Here, we show that the SPIRE-type actin nucleators (predominantly SPIRE1) are Rab27a effectors that co-operate with formin-1 to generate actin tracks required for myosin-Va-dependent transport in melanocytes. Thus, in addition to melanophilin/myosin-Va, Rab27a can recruit SPIREs to melanosomes, thereby integrating motor and track assembly activity at the organelle membrane. Based on this, we suggest a model in which organelles and force generators (motors and track assemblers) are linked, forming an organelle-based, cell-wide network that allows their collective activity to rapidly disperse the population of organelles long-distance throughout the cytoplasm.


Asunto(s)
Actinas/metabolismo , Proteínas rab27 de Unión a GTP/metabolismo , Biología Celular , Citoesqueleto/metabolismo , Células HEK293 , Humanos , Microtúbulos/metabolismo , Orgánulos , Filogenia , Proteínas rab27 de Unión a GTP/genética
10.
J Invest Dermatol ; 140(9): 1837-1846.e1, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32067956

RESUMEN

Centrosomes duplicate only once in coordination with the DNA replication cycle and have an important role in segregating genetic material. In contrast, most cancer cells have centrosome aberrations, including supernumerary centrosomes, and this correlates with aneuploidy and genetic instability. The tumor suppressors p16 (CDKN2A) and p15 (CDKN2B) (encoded by the familial melanoma CDKN2 locus) inhibit CDK4/6 activity and have important roles in cellular senescence. p16 is also associated with suppressing centrosomal aberrations in breast cancer; however, the role of p15 in centrosome amplification is unknown. Here, we investigated the relationship between p15 and p16 expression, centrosome number abnormalities, and melanoma progression in cell lines derived from various stages of melanoma progression. We found that normal human melanocyte lines did not exhibit centrosome number abnormalities, whereas those from later stages of melanoma did. Additionally, under conditions of S-phase block, p15 and p16 status determined whether centrosome overduplication would occur. Indeed, removal of p15 from p16-negative cell lines derived from various stages of melanoma progression changed cells that previously would not overduplicate their centrosomes into cells that did. Although this study used cell lines in vitro, it suggests that, during clinical melanoma progression, sequential loss of p15 and p16 provides conditions for centrosome duplication to become deregulated with consequences for genome instability.


Asunto(s)
Centrosoma/metabolismo , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/deficiencia , Inhibidor p16 de la Quinasa Dependiente de Ciclina/deficiencia , Melanoma/genética , Neoplasias Cutáneas/genética , Aneuploidia , Ciclo Celular/genética , Línea Celular Tumoral , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Regulación Neoplásica de la Expresión Génica , Inestabilidad Genómica , Humanos , Melanoma/patología , Piel/citología , Piel/patología , Neoplasias Cutáneas/patología
11.
Nat Commun ; 10(1): 5610, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31811139

RESUMEN

Dynamic mapping of extracellular pH (pHe) at the single-cell level is critical for understanding the role of H+ in cellular and subcellular processes, with particular importance in cancer. While several pHe sensing techniques have been developed, accessing this information at the single-cell level requires improvement in sensitivity, spatial and temporal resolution. We report on a zwitterionic label-free pH nanoprobe that addresses these long-standing challenges. The probe has a sensitivity > 0.01 units, 2 ms response time, and 50 nm spatial resolution. The platform was integrated into a double-barrel nanoprobe combining pH sensing with feedback-controlled distance dependance via Scanning Ion Conductance Microscopy. This allows for the simultaneous 3D topographical imaging and pHe monitoring of living cancer cells. These classes of nanoprobes were used for real-time high spatiotemporal resolution pHe mapping at the subcellular level and revealed tumour heterogeneity of the peri-cellular environments of melanoma and breast cancer cells.


Asunto(s)
Imagenología Tridimensional/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Análisis de la Célula Individual/métodos , Biofisica , Línea Celular Tumoral , Diatomeas/citología , Humanos , Concentración de Iones de Hidrógeno , Melanoma , Microscopía Electrónica de Rastreo
12.
J Cell Sci ; 132(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31201282

RESUMEN

Oculocutaneous albinism (OCA) is a heterogeneous and autosomal recessive hypopigmentation disorder, which is caused by mutations of genes involved in pigment biosynthesis or melanosome biogenesis. We have previously identified NCKX5 (also known as SLC24A5) as a causative gene for OCA type 6 (OCA6). However, the pathogenesis of OCA6 is unknown. We found that NCKX5 is localized to mitochondria, not to melanosomes. Pharmacological inhibition of mitochondrial function or NCKX exchanger activity reduced pigment production. Loss of NCKX5 attenuated Ca2+ enrichment in melanosomes, which compromised PMEL fibril formation, melanosome maturation and pigment production. Thus, we have defined a new class of hypopigmentation attributable to dysfunctional mitochondria and an impairment of mitochondrial Ca2+ transfer into melanosomes. Thus, it is possible that mitochondrial function could have a role in the graying of hair in older people and formation of hypopigmented lesions in vitiligo patients.


Asunto(s)
Melanosomas/metabolismo , Mitocondrias/metabolismo , Pigmentos Biológicos/biosíntesis , Intercambiador de Sodio-Calcio/metabolismo , Animales , Calcio/metabolismo , Melaninas/biosíntesis , Ratones , Factores de Tiempo , Antígeno gp100 del Melanoma , Red trans-Golgi/metabolismo
13.
J Cell Sci ; 132(9)2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30898842

RESUMEN

Rab GTPases are compartment-specific molecular switches that regulate intracellular vesicular transport in eukaryotes. GDP/GTP exchange factors (GEFs) control Rab activation, and current models propose that localised and regulated GEF activity is important in targeting Rabs to specific membranes. Here, we investigated the mechanism of GEF function using the Rab27a GEF, Rab3GEP (also known as MADD), in melanocytes as a model. We show that Rab3GEP-deficient melanocytes (melan-R3GKO) manifest partial disruption of melanosome dispersion, a read-out of Rab27a activation and targeting. Using rescue of melanosome dispersion in melan-R3GKO cells and effector pull-down approaches we show that the DENN domain of Rab3GEP (conserved among RabGEFs) is necessary, but insufficient, for its cellular function and GEF activity. Finally, using a mitochondrial re-targeting strategy, we show that Rab3GEP can target Rab27a to specific membranes in a GEF-dependent manner. We conclude that Rab3GEP facilitates the activation and targeting of Rab27a to specific membranes, but that it differs from other DENN-containing RabGEFs in requiring DENN and non-DENN elements for both of these activities and by lacking compartment-specific localisation.


Asunto(s)
Transporte Biológico/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas rab27 de Unión a GTP/metabolismo , Animales , Melanocitos/citología , Melanocitos/metabolismo , Melanosomas/metabolismo , Ratones , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/metabolismo , Cultivo Primario de Células , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab3/metabolismo
16.
J Cell Biol ; 214(3): 293-308, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27482051

RESUMEN

Endomembrane organelle maturation requires cargo delivery via fusion with membrane transport intermediates and recycling of fusion factors to their sites of origin. Melanosomes and other lysosome-related organelles obtain cargoes from early endosomes, but the fusion machinery involved and its recycling pathway are unknown. Here, we show that the v-SNARE VAMP7 mediates fusion of melanosomes with tubular transport carriers that also carry the cargo protein TYRP1 and that require BLOC-1 for their formation. Using live-cell imaging, we identify a pathway for VAMP7 recycling from melanosomes that employs distinct tubular carriers. The recycling carriers also harbor the VAMP7-binding scaffold protein VARP and the tissue-restricted Rab GTPase RAB38. Recycling carrier formation is dependent on the RAB38 exchange factor BLOC-3. Our data suggest that VAMP7 mediates fusion of BLOC-1-dependent transport carriers with melanosomes, illuminate SNARE recycling from melanosomes as a critical BLOC-3-dependent step, and likely explain the distinct hypopigmentation phenotypes associated with BLOC-1 and BLOC-3 deficiency in Hermansky-Pudlak syndrome variants.


Asunto(s)
Proteínas Portadoras/metabolismo , Endocitosis , Lectinas/metabolismo , Melanosomas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas R-SNARE/metabolismo , Vesículas Transportadoras/metabolismo , Animales , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Melanocitos/metabolismo , Melanocitos/ultraestructura , Melanosomas/ultraestructura , Glicoproteínas de Membrana/metabolismo , Ratones Endogámicos C57BL , Proteínas Mitocondriales , Oxidorreductasas/metabolismo , Pigmentación , Transporte de Proteínas , Proteínas Qa-SNARE/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Vesículas Transportadoras/ultraestructura , Proteínas de Unión al GTP rab/metabolismo
17.
ACS Nano ; 10(3): 3214-3221, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26816294

RESUMEN

Nanometric field-effect-transistor (FET) sensors are made on the tip of spear-shaped dual carbon nanoelectrodes derived from carbon deposition inside double-barrel nanopipettes. The easy fabrication route allows deposition of semiconductors or conducting polymers to comprise the transistor channel. A channel from electrodeposited poly pyrrole (PPy) exhibits high sensitivity toward pH changes. This property is exploited by immobilizing hexokinase on PPy nano-FETs to give rise to a selective ATP biosensor. Extracellular pH and ATP gradients are key biochemical constituents in the microenvironment of living cells; we monitor their real-time changes in relation to cancer cells and cardiomyocytes. The highly localized detection is possible because of the high aspect ratio and the spear-like design of the nano-FET probes. The accurately positioned nano-FET sensors can detect concentration gradients in three-dimensional space, identify biochemical properties of a single living cell, and after cell membrane penetration perform intracellular measurements.


Asunto(s)
Adenosina Trifosfato/análisis , Técnicas Biosensibles/instrumentación , Análisis de la Célula Individual/instrumentación , Transistores Electrónicos , Adenosina Trifosfato/metabolismo , Línea Celular Tumoral , Disulfuros/química , Electrodos , Enzimas Inmovilizadas/metabolismo , Diseño de Equipo , Hexoquinasa/metabolismo , Humanos , Molibdeno/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Polímeros/química , Pirroles/química , Saccharomyces cerevisiae/enzimología
18.
Sci Signal ; 8(392): ra87, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26329581

RESUMEN

The anaphase-promoting complex or cyclosome with the subunit Cdh1 (APC/C(Cdh1)) is an E3 ubiquitin ligase involved in the control of the cell cycle. Here, we identified sporadic mutations occurring in the genes encoding APC components, including Cdh1, in human melanoma samples and found that loss of APC/C(Cdh1) may promote melanoma development and progression, but not by affecting cell cycle regulatory targets of APC/C. Most of the mutations we found in CDH1 were those associated with ultraviolet light (UV)-induced melanomagenesis. Compared with normal human skin tissue and human or mouse melanocytes, the abundance of Cdh1 was decreased and that of the transcription factor PAX3 was increased in human melanoma tissue and human or mouse melanoma cell lines, respectively; Cdh1 abundance was further decreased with advanced stages of human melanoma. PAX3 was a substrate of APC/C(Cdh1) in melanocytes, and APC/C(Cdh1)-mediated ubiquitylation marked PAX3 for proteolytic degradation in a manner dependent on the D-box motif in PAX3. Either mutating the D-box in PAX3 or knocking down Cdh1 prevented the ubiquitylation and degradation of PAX3 and increased proliferation and melanin production in melanocytes. Knocking down Cdh1 in melanoma cells in culture or before implantation in mice promoted doxorubicin resistance, whereas reexpressing wild-type Cdh1, but not E3 ligase-deficient Cdh1 or a mutant that could not interact with PAX3, restored doxorubicin sensitivity in melanoma cells both in culture and in xenografts. Thus, our findings suggest a tumor suppressor role for APC/C(Cdh1) in melanocytes and that targeting PAX3 may be a strategy for treating melanoma.


Asunto(s)
Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proliferación Celular , Melanocitos/metabolismo , Melanoma/metabolismo , Proteínas de Neoplasias/metabolismo , Factores de Transcripción Paired Box/metabolismo , Proteolisis , Animales , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/genética , Línea Celular Tumoral , Humanos , Melanocitos/patología , Melanoma/genética , Melanoma/patología , Ratones , Proteínas de Neoplasias/genética , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/genética
19.
Hum Mol Genet ; 24(19): 5433-50, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26206884

RESUMEN

SOX10 is required for melanocyte development and maintenance, and has been linked to melanoma initiation and progression. However, the molecular mechanisms by which SOX10 guides the appropriate gene expression programs necessary to promote the melanocyte lineage are not fully understood. Here we employ genetic and epigenomic analysis approaches to uncover novel genomic targets and previously unappreciated molecular roles of SOX10 in melanocytes. Through global analysis of SOX10-binding sites and epigenetic characteristics of chromatin states, we uncover an extensive catalog of SOX10 targets genome-wide. Our findings reveal that SOX10 predominantly engages 'open' chromatin regions and binds to distal regulatory elements, including novel and previously known melanocyte enhancers. Integrated chromatin occupancy and transcriptome analysis suggest a role for SOX10 in both transcriptional activation and repression to regulate functionally distinct classes of genes. We demonstrate that distinct epigenetic signatures and cis-regulatory sequence motifs predicted to bind putative co-regulatory transcription factors define SOX10-activated and SOX10-repressed target genes. Collectively, these findings uncover a central role of SOX10 as a global regulator of gene expression in the melanocyte lineage by targeting diverse regulatory pathways.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Melanocitos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Factores de Transcripción SOXE/metabolismo , Animales , Sitios de Unión , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Epigenómica/métodos , Melanocitos/citología , Ratones , Factores de Transcripción SOXE/química , Factores de Transcripción SOXE/genética
20.
J Cell Biol ; 209(4): 563-77, 2015 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-26008744

RESUMEN

Hermansky-Pudlak syndrome (HPS) is a group of disorders characterized by the malformation of lysosome-related organelles, such as pigment cell melanosomes. Three of nine characterized HPS subtypes result from mutations in subunits of BLOC-2, a protein complex with no known molecular function. In this paper, we exploit melanocytes from mouse HPS models to place BLOC-2 within a cargo transport pathway from recycling endosomal domains to maturing melanosomes. In BLOC-2-deficient melanocytes, the melanosomal protein TYRP1 was largely depleted from pigment granules and underwent accelerated recycling from endosomes to the plasma membrane and to the Golgi. By live-cell imaging, recycling endosomal tubules of wild-type melanocytes made frequent and prolonged contacts with maturing melanosomes; in contrast, tubules from BLOC-2-deficient cells were shorter in length and made fewer, more transient contacts with melanosomes. These results support a model in which BLOC-2 functions to direct recycling endosomal tubular transport intermediates to maturing melanosomes and thereby promote cargo delivery and optimal pigmentation.


Asunto(s)
Endosomas/metabolismo , Melanosomas/metabolismo , Proteínas de Transporte Vesicular/fisiología , Animales , Endocitosis , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Melanocitos/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Oxidorreductasas/metabolismo , Transporte de Proteínas , Pigmentación de la Piel
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...