Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Acta Biomater ; 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39043290

RESUMEN

Extracellular vesicles (EV) are a heterogeneous group of lipid particles excreted by cells. They play an important role in regeneration, development, inflammation, and cancer progression, together with the extracellular matrix (ECM), which they constantly interact with. In this review, we discuss direct and indirect interactions of EVs and the ECM and their impact on different physiological processes. The ECM affects the secretion of EVs, and the properties of the ECM and EVs modulate EVs' diffusion and adhesion. On the other hand, EVs can affect the ECM both directly through enzymes and indirectly through the modulation of the ECM synthesis and remodeling by cells. This review emphasizes recently discovered types of EVs bound to the ECM and isolated by enzymatic digestion, including matrix-bound nanovesicles (MBV) and tissue-derived EV (TiEV). In addition to the experimental studies, computer models of the EV-ECM-cell interactions, from all-atom models to quantitative pharmacology models aiming to improve our understanding of the interaction mechanisms, are also considered. STATEMENT OF SIGNIFICANCE: Application of extracellular vesicles in tissue engineering is an actively developing area. Vesicles not only affect cells themselves but also interact with the matrix and change it. The matrix also influences both cells and vesicles. In this review, different possible types of interactions between vesicles, matrix, and cells are discussed. Furthermore, the united EV-ECM system and its regulation through the cellular activity are presented.

2.
Stem Cell Res Ther ; 14(1): 303, 2023 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-37865795

RESUMEN

BACKGROUND: There is growing interest to application of regenerative medicine approaches in otorhinolaryngological practice, especially in the framework of the therapy of vocal fold (VF) scar lesions. The used conservative and surgical methods, despite the achieved positive outcomes, are frequently unpredictable and do not result in the restoration of the VF's lamina propria's structure, which provides the mechanical properties necessary for vibration. In this connection, the aim of this study was to ascertain the safety and efficacy of a bioequivalent in the treatment of VF scars using a rabbit model of chronic damage. METHODS: The bioequivalent consisted of a hydrogel system based on a PEG-fibrin conjugate and human bone marrow-derived MSC. It was characterized and implanted heterotopically into rats and orthotopically into rabbits after VF scar excision. RESULTS: We showed that the fabricated bioequivalent consisted of viable cells retaining their metabolic and proliferative activity. While being implanted heterotopically, it had induced the low inflammatory reaction in 7 days and was well tolerated. The orthotopic implantation showed that the gel application was characterized by a lower hemorrhage intensity (p = 0.03945). The intensity of stridor and respiratory rate between the groups in total and between separate groups had no statistically significant difference (p = 0.96 and p = 1; p = 0.9593 and p = 0.97…1, respectively). In 3 days post-implantation, MSC were detected only in the tissues closely surrounding the VF defect. The bioequivalent injection caused that the scar collagen fibers were packed looser and more frequently mutually parallel that is inherent in the native tissue (p = 0.018). In all experimental groups, the fibrous tissue's ingrowth in the adjacent exterior muscle tissue was observed; however, in Group 4 (PEG-Fibrin + MSC), it was much less pronounced than it was in Group 1 (normal saline) (p = 0.008). The difference between the thicknesses of the lamina propria in the control group and in Group 4 was not revealed to be statistically significant (p = 0.995). The Young's modulus of the VF after the bioequivalent implantation (1.15 ± 0.25 kPa) did not statistically significantly differ from the intact VF modulus (1.17 ± 0.45 kPa); therefore, the tissue properties in this group more closely resembled the intact VF. CONCLUSIONS: The developed bioequivalent showed to be biocompatible and highly efficient in the restoration of VF's tissue.


Asunto(s)
Cicatriz , Trasplante de Células Madre Mesenquimatosas , Humanos , Conejos , Animales , Ratas , Cicatriz/terapia , Cicatriz/patología , Pliegues Vocales , Medicina Regenerativa , Fibrina
3.
Int J Oncol ; 63(1)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37232367

RESUMEN

Cancer is considered the most important clinical, social and economic issue regarding cause­specific disability­adjusted life years among all human pathologies. Exogenous, endogenous and individual factors, including genetic predisposition, participate in cancer triggering. Telomeres are specific DNA structures positioned at the end of chromosomes and consist of repetitive nucleotide sequences, which, together with shelterin proteins, facilitate the maintenance of chromosome stability, while protecting them from genomic erosion. Even though the connection between telomere status and carcinogenesis has been identified, the absence of a universal or even a cancer­specific trend renders consent even more complex. It is indicative that both short and long telomere lengths have been associated with a high risk of cancer incidence. When evaluating risk associations between cancer and telomere length, a disparity appears to emerge. Even though shorter telomeres have been adopted as a marker of poorer health status and an older biological age, longer telomeres due to increased cell growth potential are associated with the acquirement of cancer­initiating somatic mutations. Therefore, the present review aimed to comprehensively present the multifaceted pattern of telomere length and cancer incidence association.


Asunto(s)
Neoplasias , Telomerasa , Humanos , Neoplasias/genética , Neoplasias/patología , Telómero/genética , Telómero/metabolismo , Carcinogénesis , Inestabilidad Cromosómica , ADN , Telomerasa/genética
4.
Stem Cell Res Ther ; 14(1): 142, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37231519

RESUMEN

BACKGROUND: There is a growing body of evidence that multipotent mesenchymal stromal cells' (MSCs') remarkable therapeutic potential is attributed not only to their differentiation and regenerative capacity, but also to the paracrine effect, underlying their immunomodulatory properties. MSCs' secretome (i.e., cytokines, growth factors, and extracellular vesicles) is therefore increasingly discussed in the context of their ability to modulate inflammatory response and promote regeneration. There is evidence that 2D or 3D culturing conditions have an impact on the cells' secretome, and here we aimed to compare the secretion of cytokines and growth factors in human MSCs from different sources cultured in 2D and 3D conditions and assess their effect on human macrophages polarization in vitro. METHODS: MSCs were derived from human adipose tissue, bone marrow, gingiva, placenta, and umbilical cord, cultured as monolayers or as cell spheroids. Their cytokine profiles were analyzed, and data standardization was carried out using a z-score. Human peripheral blood mononuclear cells-derived macrophages were then treated with umbilical cord-derived MSCs' conditioned media and their effect on macrophages polarization was assessed. RESULTS: Our findings suggest that umbilical cord-derived MSCs' conditioned media demonstrated the highest cytokine and growth factor levels and despite mostly pro-inflammatory cytokine profile were able to promote anti-inflammatory macrophage polarization. CONCLUSIONS: Umbilical cord-derived MSCs' conditioned media hold great potential for therapeutic use, demonstrating significant anti-inflammatory effect on human macrophages.


Asunto(s)
Citocinas , Leucocitos Mononucleares , Embarazo , Femenino , Humanos , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Leucocitos Mononucleares/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Macrófagos/metabolismo
5.
Bioengineering (Basel) ; 9(11)2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36421115

RESUMEN

Vaccination has been identified as a critical method of disease control in the context of the current COVID-19 pandemic. The goal of this review is to update information on vaccine development and to identify areas of concern that require further research. We reviewed the literature on the development of COVID-19 vaccines, their efficacy, and use in special populations, as well as current vaccination strategies. To date, 170 vaccines are in clinical development, with 41 being already approved for use in various countries. The majority of vaccines approved for human use are vector-, subunit-, DNA-, or mRNA-based vaccines, or inactivated viruses. Because of the ongoing mutation of the SARS-CoV-2 virus, well-studied vector vaccines are losing relevance due to the ability of new virus strains to bypass neutralizing antibodies. Simultaneously, PS-based vaccines are becoming more popular. There is mounting evidence that the immunogenicity of COVID-19 vaccines is linked to their clinical efficacy. This has resulted in a shift in vaccination strategies, as well as the use of booster doses and revaccination. Furthermore, vaccination restrictions for children, pregnant women, the elderly, and people with chronic immunosuppressive diseases have been lifted, allowing more people to be vaccinated. New data on vaccine safety, including the incidence of serious adverse events, have been collected. Despite significant advances in the development of and research on COVID-19 vaccines, many questions remain that require further investigation.

6.
BMC Med ; 20(1): 244, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794549

RESUMEN

BACKGROUND: Previous studies assessing the prevalence of COVID-19 sequelae in adults and children were performed in the absence of an agreed definition. We investigated prevalence of post-COVID-19 condition (PCC) (WHO definition), at 6- and 12-months follow-up, amongst previously hospitalised adults and children and assessed risk factors. METHODS: Prospective cohort study of children and adults with confirmed COVID-19 in Moscow, hospitalised between April and August, 2020. Two follow-up telephone interviews, using the International Severe Acute Respiratory and Emerging Infection Consortium survey, were performed at 6 and 12 months after discharge. RESULTS: One thousand thirteen of 2509 (40%) of adults and 360 of 849 (42%) of children discharged participated in both the 6- and 12-month follow-ups. PCC prevalence was 50% (95% CI 47-53) in adults and 20% (95% CI 16-24) in children at 6 months, with decline to 34% (95% CI 31-37) and 11% (95% CI 8-14), respectively, at 12 months. In adults, female sex was associated with PCC at 6- and 12-month follow-up (OR 2.04, 95% CI 1.57 to 2.65) and (OR 2.04, 1.54 to 2.69), respectively. Pre-existing hypertension (OR 1.42, 1.04 to 1.94) was associated with post-COVID-19 condition at 12 months. In children, neurological comorbidities were associated with PCC both at 6 months (OR 4.38, 1.36 to 15.67) and 12 months (OR 8.96, 2.55 to 34.82) while allergic respiratory diseases were associated at 12 months (OR 2.66, 1.04 to 6.47). CONCLUSIONS: Although prevalence of PCC declined one year after discharge, one in three adults and one in ten children experienced ongoing sequelae. In adults, females and persons with pre-existing hypertension, and in children, persons with neurological comorbidities or allergic respiratory diseases are at higher risk of PCC.


Asunto(s)
COVID-19 , Hipertensión , Adulto , COVID-19/epidemiología , Niño , Estudios de Cohortes , Femenino , Hospitales , Humanos , Moscú/epidemiología , Alta del Paciente , Prevalencia , Estudios Prospectivos , Factores de Riesgo
7.
Stem Cell Res Ther ; 13(1): 317, 2022 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842689

RESUMEN

One of the severe complications occurring because of the patient's intubation is tracheal stenosis. Its incidence has significantly risen because of the COVID-19 pandemic and tends only to increase. Here, we propose an alternative to the donor trachea and synthetic prostheses-the tracheal equivalent. To form it, we applied the donor trachea samples, which were decellularized, cross-linked, and treated with laser to make wells on their surface, and inoculated them with human gingiva-derived mesenchymal stromal cells. The fabricated construct was assessed in vivo using nude (immunodeficient), immunosuppressed, and normal mice and rabbits. In comparison with the matrix ones, the tracheal equivalent samples demonstrated the thinning of the capsule, the significant vessel ingrowth into surrounding tissues, and the increase in the submucosa resorption. The developed construct was shown to be highly biocompatible and efficient in trachea restoration. These results can facilitate its clinical translation and be a base to design clinical trials.


Asunto(s)
COVID-19 , Ingeniería de Tejidos , Animales , Humanos , Rayos Láser , Ratones , Pandemias , Conejos , Ingeniería de Tejidos/métodos , Andamios del Tejido , Tráquea
8.
PLoS One ; 17(6): e0264903, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35657919

RESUMEN

Cardiovascular diseases associated with high cholesterol (hypercholesterolemia) and low-density lipoproteins (LDL) levels are significant contributors to total mortality in developing and developed countries. Mathematical modeling of LDL metabolism is an important step in the development of drugs for hypercholesterolemia. The aim of this work was to develop and to analyze an integrated mathematical model of cholesterol metabolism in liver cells and its interaction with two types of drugs, statins and PCSK9 inhibitors. The model consisted of 21 ordinary differential equations (ODE) describing cholesterol biosynthesis and lipoprotein endocytosis in liver cells in vitro. The model was tested for its ability to mimic known biochemical effects of familial hypercholesterolemia, statin therapy, and PCSK9 inhibitors. The model qualitatively reproduced the well-known biology of cholesterol regulation, which confirms its potential for minimizing cellular research in initial testing of new drugs for cardiology.


Asunto(s)
Anticolesterolemiantes , Carcinoma Hepatocelular , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Hipercolesterolemia , Hiperlipidemias , Neoplasias Hepáticas , Anticuerpos Monoclonales/uso terapéutico , Anticolesterolemiantes/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Colesterol , LDL-Colesterol/metabolismo , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Hipercolesterolemia/tratamiento farmacológico , Hiperlipidemias/tratamiento farmacológico , Lipoproteínas , Neoplasias Hepáticas/tratamiento farmacológico , Modelos Teóricos , Inhibidores de PCSK9 , Proproteína Convertasa 9/metabolismo
10.
Curr Neuropharmacol ; 20(10): 1908-1924, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35236265

RESUMEN

In view of the significant role of H2S in brain functioning, it is proposed that H2S may also possess protective effects against adverse effects of neurotoxicants. Therefore, the objective of the present review is to discuss the neuroprotective effects of H2S against toxicity of a wide spectrum of endogenous and exogenous agents involved in the pathogenesis of neurological diseases as etiological factors or key players in disease pathogenesis. Generally, the existing data demonstrate that H2S possesses neuroprotective effects upon exposure to endogenous (amyloid ß, glucose, and advanced-glycation end-products, homocysteine, lipopolysaccharide, and ammonia) and exogenous (alcohol, formaldehyde, acrylonitrile, metals, 6-hydroxydopamine, as well as 1-methyl-4-phenyl- 1,2,3,6- tetrahydropyridine (MPTP) and its metabolite 1-methyl-4-phenyl pyridine ion (MPP)) neurotoxicants. On the one hand, neuroprotective effects are mediated by S-sulfhydration of key regulators of antioxidant (Sirt1, Nrf2) and inflammatory response (NF-κB), resulting in the modulation of the downstream signaling, such as SIRT1/TORC1/CREB/BDNF-TrkB, Nrf2/ARE/HO-1, or other pathways. On the other hand, H2S appears to possess a direct detoxicative effect by binding endogenous (ROS, AGEs, Aß) and exogenous (MeHg) neurotoxicants, thus reducing their toxicity. Moreover, the alteration of H2S metabolism through the inhibition of H2S-synthetizing enzymes in the brain (CBS, 3-MST) may be considered a significant mechanism of neurotoxicity. Taken together, the existing data indicate that the modulation of cerebral H2S metabolism may be used as a neuroprotective strategy to counteract neurotoxicity of a wide spectrum of endogenous and exogenous neurotoxicants associated with neurodegeneration (Alzheimer's and Parkinson's disease), fetal alcohol syndrome, hepatic encephalopathy, environmental neurotoxicant exposure, etc. In this particular case, modulation of H2S-synthetizing enzymes or the use of H2S-releasing drugs should be considered as the potential tools, although the particular efficiency and safety of such interventions are to be addressed in further studies.


Asunto(s)
Sulfuro de Hidrógeno , Fármacos Neuroprotectores , Péptidos beta-Amiloides , Humanos , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/farmacología , Sirtuina 1
11.
Bioengineering (Basel) ; 9(2)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35200425

RESUMEN

Vaccination is one of the key strategies to stop the COVID-19 pandemic. This review aims to evaluate the current state of vaccine development and to determine the issues that merit additional research. We conducted a literature review of the development of COVID-19 vaccines, their effectiveness, and their use in special patient groups. To date, 140 vaccines are in clinical development. Vector, RNA, subunit, and inactivated vaccines, as well as DNA vaccines, have been approved for human use. Vector vaccines have been well studied prior to the COVID-19 pandemic; however, their long-term efficacy and approaches to scaling up their production remain questionable. The main challenge for RNA vaccines is to improve their stability during production, storage, and transportation. For inactivated vaccines, the key issue is to improve their immunogenicity and effectiveness. To date, it has been shown that the immunogenicity of COVID-19 vaccines directly correlates with their clinical efficacy. In view of the constant mutation, the emerging new SARS-CoV-2 variants have been shown to be able to partially escape post-vaccination immune response; however, most vaccines remain sufficiently effective regardless of the variant of the virus. One of the promising strategies to improve the effectiveness of vaccination, which is being studied, is the use of different platforms within a single vaccination course. Despite significant progress in the development and study of COVID-19 vaccines, there are many issues that require further research.

12.
Medicine (Baltimore) ; 100(41): e27528, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34731146

RESUMEN

ABSTRACT: Diarrhea is one of the manifestations of the novel coronavirus disease (COVID-19), but it also develops as a complication of massive antibiotic therapy in this disease. This study aimed to compare these types of diarrhea.We included patients with COVID-19 in a cohort study and excluded patients with chronic diarrhea, laxative use, and those who died during the first day of hospitalization.There were 89 (9.3%), 161 (16.7%), and 731 (75.7%) patients with early viral, late antibiotic-associated, and without diarrhea, respectively. Late diarrhea lasted longer (6 [4-10] vs 5 [3-7] days, P < .001) and was more severe. Clostridioides difficile was found in 70.5% of tested patients with late diarrhea and in none with early diarrhea. Presence of late diarrhea was associated with an increased risk of death after 20 days of disease (P = .009; hazard ratio = 4.7). Patients with late diarrhea had a longer hospital stay and total disease duration, and a higher proportion of these patients required intensive care unit admission. Oral amoxicillin/clavulanate (odds ratio [OR] = 2.23), oral clarithromycin (OR = 3.79), and glucocorticoids (OR = 4.41) use was a risk factor for the development of late diarrhea, while ceftriaxone use (OR = 0.35) had a protective effect. Before the development of late diarrhea, decrease in C-reactive protein levels and increase in lymphocyte count stopped but the white blood cell and neutrophil count increased. An increase in neutrophils by >0.6 × 109 cells/L predicted the development of late diarrhea in the coming days (sensitivity 82.0%, specificity 70.8%, area under the curve = 0.791 [0.710-0.872]).Diarrhea in COVID-19 is heterogeneous, and different types of diarrhea require different management.


Asunto(s)
Antibacterianos/efectos adversos , COVID-19/epidemiología , Diarrea/inducido químicamente , Diarrea/virología , Anciano , Diarrea/clasificación , Diarrea/epidemiología , Humanos , Tiempo de Internación , Persona de Mediana Edad , Pandemias , Estudios Retrospectivos , Factores de Riesgo , SARS-CoV-2
13.
Drug Metab Pers Ther ; 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34844290

RESUMEN

OBJECTIVES: To study the pharmacokinetics and relative bioavailability of drugs of different chemical structure and pharmacological action under conditions simulating the effects of some factors of spaceflight, as well as the peculiarities of the pharmacokinetics of acetaminophen under long-term spaceflight conditions. METHODS: The pharmacokinetics of verapamil (n=8), propranolol (n=8), etacizine (n=9), furosemide (n=6), and acetaminophen (n=7) in healthy volunteers after a single oral administration under normal conditions (background) and under antiorthostatic hypokinesia (ANOH), the pharmacokinetics of acetaminophen in spaceflight members under normal ground conditions (background) (n=8) and under prolonged spaceflight conditions (SF) (n=5) were studied. RESULTS: The stay of volunteers under antiorthostatic hypokinesia had different effects on the pharmacokinetics and bioavailability of drugs: Compared to background, there was a decreasing trend in Vz for verapamil (-54 Δ%), furosemide (-20 Δ%), propranolol (-8 Δ%), and acetaminophen (-9 Δ%), but a statistically significant increase in Vz was found for etacizine (+39 Δ%); there was an increasing trend in Clt for propranolol (+13 Δ%) and acetaminophen (+16 Δ%), and a decreasing trend in Clt for etacizine, verapamil, and furosemide (-22, -23 and -9 Δ% respectively) in ANOH. The relative bioavailability of etacizine, verapamil, and furosemide in ANOH increased compared to background (+40, +23 and +13 Δ%, respectively), propranolol and acetaminophen decreased (-5 and -12 Δ% accordingly). The relative rate of absorption of etacizine and furosemide in ANOH decreased (-19 and -20 Δ%, respectively) while that of verapamil, propranolol, and acetaminophen increased (+42, +58 and +26 Δ%, respectively). A statistically significant decrease in AUC0-∞ (-57 Δ%), Cmax (-53 Δ%), relative bioavailability of acetaminophen (-52 Δ%) and a sharp increase in Clt (+147 Δ%), Tmax (+131 Δ%) as well as a trend towards a significant decrease in T1/2 (-53 Δ%), MRT (-36 Δ%) and a moderate increase in Vz (+24 Δ%) were found under control compared to background. Unidirectional changes in AUC0-∞, Clt, T1/2, MRT and relative bioavailability of acetaminophen, which are more pronounced in SF and opposite dynamics for Cmax, Tmax, Vz were found in ANOH and SP compared to background studies. CONCLUSIONS: The data obtained allow recommending the studied drugs for rational pharmacotherapy in the possible development of cardiovascular disease in manned spaceflight.

14.
Front Physiol ; 12: 690619, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630136

RESUMEN

Up until now, the specific mechanisms involved in doxorubicin (DOX)-induced cardiotoxicity have not been fully elucidated. Since thiamine deficiency is associated with myocardial dysfunction and it may lead to cardiomyopathy, we aimed to investigate whether thiamine (Vitamin B1) treatment provides cardioprotection and modulates DOX mediated subchronic cardiotoxicity as well as to determine possible mechanisms of its effects. The study involved 48 Wistar albino rats divided into four groups: healthy non-treated rats and healthy rats treated with thiamine and DOX rats without treatment and DOX rats treated with thiamine. DOX was applied as a single i.p.injection (15mg/kg), while thiamine treatment lasted 7days (25mg/kg/dayi.p.). Before and after the treatment hemodynamic changes were monitored in vivo by echocardiography. When the protocol was completed, animals were sacrificed and rat hearts were isolated in order to evaluate parameters of cardiac oxidative stress [superoxide anion radical-O2 -, hydrogen peroxide-H2O2, nitric oxide-NO-, index of lipid peroxidation-thiobarbituric acid (TBA) reactive substances (TBARS), superoxide dismutase - SOD, catalase (CAT), and reduced glutathione-GSH] and apoptosis (Bax, Bcl-2, caspases). DOX treatment significantly reduced the ejection fraction, while thiamine treatment led to its minor increase in the DOX-treated group. In that sense, heart oxidative stress markers were significantly increased in DOX-treated rats, while therapeutic dose of thiamine decreased the levels of free radicals. Our study demonstrated the promising ameliorative effects of thiamine against DOX-induced cardiotoxicity through modulation of oxidative stress, suppression of apoptosis, and possibility to improve myocardial performance and morphometric structure of rats` hearts.

16.
Toxicol Rep ; 8: 1665-1684, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34540594

RESUMEN

This article examines issues related to COVID-19 inoculations for children. The bulk of the official COVID-19-attributed deaths per capita occur in the elderly with high comorbidities, and the COVID-19 attributed deaths per capita are negligible in children. The bulk of the normalized post-inoculation deaths also occur in the elderly with high comorbidities, while the normalized post-inoculation deaths are small, but not negligible, in children. Clinical trials for these inoculations were very short-term (a few months), had samples not representative of the total population, and for adolescents/children, had poor predictive power because of their small size. Further, the clinical trials did not address changes in biomarkers that could serve as early warning indicators of elevated predisposition to serious diseases. Most importantly, the clinical trials did not address long-term effects that, if serious, would be borne by children/adolescents for potentially decades. A novel best-case scenario cost-benefit analysis showed very conservatively that there are five times the number of deaths attributable to each inoculation vs those attributable to COVID-19 in the most vulnerable 65+ demographic. The risk of death from COVID-19 decreases drastically as age decreases, and the longer-term effects of the inoculations on lower age groups will increase their risk-benefit ratio, perhaps substantially.

17.
Angew Chem Int Ed Engl ; 60(48): 25339-25345, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34590774

RESUMEN

The self-assembly of peptides is a key direction for fabrication of advanced materials. Novel approaches for fine tuning of macroscopic and microscopic properties of peptide self-assemblies are of a high demand for constructing biomaterials with desired properties. In this work, while studying the kinetics of the Fmoc-Diphenylalanine (Fmoc-FF) dipeptide self-assembly using the Thioflavin T (ThT) dye, we observed that the presence of ThT strongly modifies structural and mechanical properties of the Fmoc-FF hydrogel. Notably, the presence of ThT resulted in a tenfold increase of the gelation time and in the formation of short and dense fibers in the hydrogel. As a result of these morphological alteration higher thermal stability, and most important, tenfold increase of the hydrogel rigidity was achieved. Hence, ThT not only slowed the kinetics of the Fmoc-FF hydrogel formation, but also strongly enhanced its mechanical properties. In this study, we provide a detailed description of the ThT effect on the hydrogel properties and suggest the mechanisms for this phenomenon, paving the way for the novel approach to the control of the peptide hydrogels' micro- and macroscale properties.

18.
Biophys Rev ; 13(4): 541-561, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34471438

RESUMEN

Cell aggregates, including sheets and spheroids, represent a simple yet powerful model system to study both biochemical and biophysical intercellular interactions. However, it is becoming evident that, although the mechanical properties and behavior of multicellular structures share some similarities with individual cells, yet distinct differences are observed in some principal aspects. The description of mechanical phenomena at the level of multicellular model systems is a necessary step for understanding tissue mechanics and its fundamental principles in health and disease. Both cell sheets and spheroids are used in tissue engineering, and the modulation of mechanical properties of cell constructs is a promising tool for regenerative medicine. Here, we review the data on mechanical characterization of cell sheets and spheroids, focusing both on advances in the measurement techniques and current understanding of the subject. The reviewed material suggest that interplay between the ECM, intercellular junctions, and cellular contractility determines the behavior and mechanical properties of the cell aggregates.

19.
Clin Exp Allergy ; 51(9): 1107-1120, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34351016

RESUMEN

BACKGROUND: The long-term sequalae of COVID-19 remain poorly characterized. We assessed persistent symptoms in previously hospitalized patients with COVID-19 and assessed potential risk factors. METHODS: Data were collected from patients discharged from 4 hospitals in Moscow, Russia between 8 April and 10 July 2020. Participants were interviewed via telephone using an ISARIC Long-term Follow-up Study questionnaire. RESULTS: 2,649 of 4755 (56%) discharged patients were successfully evaluated, at median 218 (IQR 200, 236) days post-discharge. COVID-19 diagnosis was clinical in 1291 and molecular in 1358. Most cases were mild, but 902 (34%) required supplemental oxygen and 68 (2.6%) needed ventilatory support. Median age was 56 years (IQR 46, 66) and 1,353 (51.1%) were women. Persistent symptoms were reported by 1247 (47.1%) participants, with fatigue (21.2%), shortness of breath (14.5%) and forgetfulness (9.1%) the most common symptoms and chronic fatigue (25%) and respiratory (17.2%) the most common symptom categories. Female sex was associated with any persistent symptom category OR 1.83 (95% CI 1.55 to 2.17) with association being strongest for dermatological (3.26, 2.36 to 4.57) symptoms. Asthma and chronic pulmonary disease were not associated with persistent symptoms overall, but asthma was associated with neurological (1.95, 1.25 to 2.98) and mood and behavioural changes (2.02, 1.24 to 3.18), and chronic pulmonary disease was associated with chronic fatigue (1.68, 1.21 to 2.32). CONCLUSIONS: Almost half of adults admitted to hospital due to COVID-19 reported persistent symptoms 6 to 8 months after discharge. Fatigue and respiratory symptoms were most common, and female sex was associated with persistent symptoms.


Asunto(s)
Cuidados Posteriores , Tratamiento Farmacológico de COVID-19 , Prueba de COVID-19 , COVID-19/epidemiología , Hospitalización , SARS-CoV-2 , Encuestas y Cuestionarios , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Estudios de Seguimiento , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Factores de Riesgo , Federación de Rusia/epidemiología
20.
Curr Pharm Des ; 27(31): 3399-3412, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34082674

RESUMEN

BACKGROUND: This review summarizes recent findings in molecular biology and neuroimaging and their applicability to the classification and identification of depression. We discuss whether there is reliable evidence that could become a basis for biomarkers or subtyping that may enhance our understanding of the biological foundations of depression and may be useful for clinical practice with respect to diagnosis and prognosis as well as the selection of treatments. OBJECTIVE: The purpose of this investigation is to present molecular mechanisms that contribute to different origins of depressions that could prove useful in the daily psychiatric clinic-based practices. METHODS: The authors have analyzed and summarized electronic publications available in PubMed, Science Direct, Google Scholar, and Scopus. RESULTS: The introduction of molecular diagnostic methods into medical practice is a promising method to improve the accuracy of the diagnosis of depression in clinical settings. The literature analysis revealed structural changes in some areas of the brain, its neuroplasticity, as well as changes at the molecular, epigenetic, and genetic levels. However, there are no current reliable biomarkers for differential diagnosis of the types and subtypes of depression. CONCLUSION: Major depressive disorder is a biologically and genetically heterogeneous disorder. Given its complexity, subtyping is worthwhile to identify biological bases of conditions. The literature review provides ample findings that reveal possible underlying biological mechanisms associated with atypical and melancholic depression. Additional focused research should be continued with respect to the molecular and genetic biology of different types of depression. There already are promising findings, but additional research to define biologically based depressive subtypes is needed and worthwhile.


Asunto(s)
Trastorno Depresivo Mayor , Biomarcadores , Depresión , Trastorno Depresivo Mayor/diagnóstico , Trastorno Depresivo Mayor/genética , Humanos , Biología Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA