Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 50(13): 7202-7215, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34933339

RESUMEN

Expression of therapeutically important proteins has benefited dramatically from the advent of chemically modified mRNAs that feature decreased lability and immunogenicity. This had a momentous effect on the rapid development of COVID-19 mRNA vaccines. Incorporation of the naturally occurring pseudouridine (Ψ) or N1-methyl-pseudouridine (N1mΨ) into in vitro transcribed mRNAs prevents the activation of unwanted immune responses by blocking eIF2α phosphorylation, which inhibits translation. Here, we report that Ψs in luciferase (Luc) mRNA exacerbate translation pausing in nuclease-untreated rabbit reticulocyte lysate (uRRL) and promote the formation of high-order-ribosome structures. The major deceleration of elongation occurs at the Ψ-rich nucleotides 1294-1326 of Ψ-Luc mRNA and results in premature termination of translation. The impairment of translation is mainly due to the shortage of membranous components. Supplementing uRRL with canine microsomal membranes (CMMs) relaxes the impediments to ribosome movement, resolves collided ribosomes, and greatly enhances full-size luciferase production. CMMs also strongly stimulated an extremely inefficient translation of N1mΨ-Luc mRNA in uRRL. Evidence is presented that translational pausing can promote membrane recruitment of polysomes with nascent polypeptides that lack a signal sequence. Our results highlight an underappreciated role of membrane binding to polysomes in the prevention of ribosome collision and premature release of nascent polypeptides.


Asunto(s)
COVID-19 , Membranas Intracelulares/metabolismo , Extensión de la Cadena Peptídica de Translación , Seudouridina , ARN Mensajero , Animales , Perros , Técnicas In Vitro , Péptidos/metabolismo , Seudouridina/análogos & derivados , Seudouridina/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Conejos
2.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34615711

RESUMEN

Cervical cancer is the fourth most common cause of cancer in women worldwide in terms of both incidence and mortality. Persistent infection with high-risk types of human papillomavirus (HPV), namely 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, and 68, constitute a necessary cause for the development of cervical cancer. Viral oncoproteins E6 and E7 play central roles in the carcinogenic process by virtue of their interactions with cell master proteins such as p53, retinoblastoma (Rb), mammalian target of rapamycin (mTOR), and c-MYC. For the synthesis of E6 and E7, HPVs use a bicistronic messenger RNA (mRNA) that has been studied in cultured cells. Here, we report that in cervical tumors, HPV-18, -39, and -45 transcribe E6/E7 mRNAs with extremely short 5' untranslated regions (UTRs) or even lacking a 5' UTR (i.e., zero to three nucleotides long) to express E6. We show that the translation of HPV-18 E6 cistron is regulated by the motif ACCaugGCGCG(C/A)UUU surrounding the AUG start codon, which we term Translation Initiation of Leaderless mRNAs (TILM). This motif is conserved in all HPV types of the phylogenetically coherent group forming genus alpha, species 7, which infect mucosal epithelia. We further show that the translation of HPV-18 E6 largely relies on the cap structure and eIF4E and eIF4AI, two key translation initiation factors linking translation and cancer but does not involve scanning. Our results support the notion that E6 forms the center of the positive oncogenic feedback loop node involving eIF4E, the mTOR cascade, and p53.


Asunto(s)
Proteínas de Unión al ADN/genética , Factor 4A Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/genética , Papillomavirus Humano 18/genética , Proteínas Oncogénicas Virales/genética , ARN Mensajero/genética , Regiones no Traducidas 5'/genética , Línea Celular Tumoral , Codón Iniciador/genética , Proteínas de Unión al ADN/biosíntesis , Femenino , Regulación Viral de la Expresión Génica/genética , Células HEK293 , Células HaCaT , Células HeLa , Papillomavirus Humano 18/metabolismo , Humanos , Proteínas Oncogénicas Virales/biosíntesis , Iniciación de la Cadena Peptídica Traduccional/genética , ARN Viral/genética , Serina-Treonina Quinasas TOR/genética , Proteína p53 Supresora de Tumor/genética , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/virología
3.
Sci Rep ; 8(1): 17435, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30487538

RESUMEN

Eukaryotic mRNA has a cap structure and a poly(A) tail at the 5' and 3' ends, respectively. The cap structure is recognized by eIF (eukaryotic translation initiation factor) 4 F, while the poly(A) tail is bound by poly(A)-binding protein (PABP). PABP has four RNA recognition motifs (RRM1-4), and RRM1-2 binds both the poly(A) tail and eIF4G component of eIF4F, resulting in enhancement of translation. Here, we show that PABP interacts with the 40S and 60S ribosomal subunits dynamically via RRM2-3 or RRM3-4. Using a reconstituted protein expression system, we demonstrate that wild-type PABP activates translation in a dose-dependent manner, while a PABP mutant that binds poly(A) RNA and eIF4G, but not the ribosome, fails to do so. From these results, functional significance of the interaction of PABP with the ribosome is discussed.


Asunto(s)
Proteínas de Unión a Poli(A)/metabolismo , Ribosomas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular , Factor 4F Eucariótico de Iniciación , Factor 4G Eucariótico de Iniciación/metabolismo , Humanos , Modelos Moleculares , Conformación Molecular , Proteínas de Unión a Poli(A)/química , Proteínas de Unión a Poli(A)/genética , Unión Proteica , Biosíntesis de Proteínas , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/metabolismo , Ribosomas/química , Relación Estructura-Actividad
4.
Nucleic Acids Res ; 45(10): 6023-6036, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28334758

RESUMEN

Certain chemical modifications confer increased stability and low immunogenicity to in vitro transcribed mRNAs, thereby facilitating expression of therapeutically important proteins. Here, we demonstrate that N1-methyl-pseudouridine (N1mΨ) outperforms several other nucleoside modifications and their combinations in terms of translation capacity. Through extensive analysis of various modified transcripts in cell-free translation systems, we deconvolute the different components of the effect on protein expression independent of mRNA stability mechanisms. We show that in addition to turning off the immune/eIF2α phosphorylation-dependent inhibition of translation, the incorporated N1mΨ nucleotides dramatically alter the dynamics of the translation process by increasing ribosome pausing and density on the mRNA. Our results indicate that the increased ribosome loading of modified mRNAs renders them more permissive for initiation by favoring either ribosome recycling on the same mRNA or de novo ribosome recruitment.


Asunto(s)
Factor 2 Eucariótico de Iniciación/fisiología , Polirribosomas/metabolismo , Biosíntesis de Proteínas , Seudouridina/análogos & derivados , ARN Mensajero/genética , Animales , Línea Celular , Sistema Libre de Células , Activación Enzimática , Fibroblastos , Células HEK293 , Células HeLa , Humanos , Ratones , Fosforilación , Procesamiento Proteico-Postraduccional , Seudouridina/metabolismo , ARN/metabolismo , Estabilidad del ARN , ARN Mensajero/química , Transfección , eIF-2 Quinasa/metabolismo
5.
J Biol Chem ; 290(26): 15996-6020, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-25940091

RESUMEN

The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of protein synthesis. The best studied targets of mTORC1 in translation are the eukaryotic initiation factor-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). In this study, we identify the La-related protein 1 (LARP1) as a key novel target of mTORC1 with a fundamental role in terminal oligopyrimidine (TOP) mRNA translation. Recent genome-wide studies indicate that TOP and TOP-like mRNAs compose a large portion of the mTORC1 translatome, but the mechanism by which mTORC1 controls TOP mRNA translation is incompletely understood. Here, we report that LARP1 functions as a key repressor of TOP mRNA translation downstream of mTORC1. Our data show the following: (i) LARP1 associates with mTORC1 via RAPTOR; (ii) LARP1 interacts with TOP mRNAs in an mTORC1-dependent manner; (iii) LARP1 binds the 5'TOP motif to repress TOP mRNA translation; and (iv) LARP1 competes with the eukaryotic initiation factor (eIF) 4G for TOP mRNA binding. Importantly, from a drug resistance standpoint, our data also show that reducing LARP1 protein levels by RNA interference attenuates the inhibitory effect of rapamycin, Torin1, and amino acid deprivation on TOP mRNA translation. Collectively, our findings demonstrate that LARP1 functions as an important repressor of TOP mRNA translation downstream of mTORC1.


Asunto(s)
Autoantígenos/metabolismo , Regulación hacia Abajo , Glicoproteínas de Membrana/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , Ribonucleoproteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autoantígenos/genética , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Glicoproteínas de Membrana/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Unión Proteica , ARN Largo no Codificante , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteína Reguladora Asociada a mTOR , Ribonucleoproteínas/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Antígeno SS-B
6.
Nucleic Acids Res ; 43(7): 3764-75, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25779044

RESUMEN

Initiation is a highly regulated rate-limiting step of mRNA translation. During cap-dependent translation, the cap-binding protein eIF4E recruits the mRNA to the ribosome. Specific elements in the 5'UTR of some mRNAs referred to as Internal Ribosome Entry Sites (IRESes) allow direct association of the mRNA with the ribosome without the requirement for eIF4E. Cap-independent initiation permits translation of a subset of cellular and viral mRNAs under conditions wherein cap-dependent translation is inhibited, such as stress, mitosis and viral infection. DAP5 is an eIF4G homolog that has been proposed to regulate both cap-dependent and cap-independent translation. Herein, we demonstrate that DAP5 associates with eIF2ß and eIF4AI to stimulate IRES-dependent translation of cellular mRNAs. In contrast, DAP5 is dispensable for cap-dependent translation. These findings provide the first mechanistic insights into the function of DAP5 as a selective regulator of cap-independent translation.


Asunto(s)
Factor 2B Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Células HEK293 , Humanos , Caperuzas de ARN
7.
Cell Metab ; 21(3): 479-92, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25738462

RESUMEN

Protein synthesis is a major energy-consuming process, which is rapidly repressed upon energy stress by AMPK. How energy deficiency affects translation of mRNAs that cope with the stress response is poorly understood. We found that mitochondrial genes remain translationally active upon energy deprivation. Surprisingly, inhibition of translation is partially retained in AMPKα1/AMPKα2 knockout cells. Mitochondrial mRNAs are enriched with TISU, a translation initiator of short 5' UTR, which confers resistance specifically to energy stress. Purified 48S preinitiation complex is sufficient for initiation via TISU AUG, when preceded by a short 5' UTR. eIF1 stimulates TISU but inhibits non-TISU-directed initiation. Remarkably, eIF4GI shares this activity and also interacts with eIF1. Furthermore, eIF4F is released upon 48S formation on TISU. These findings describe a specialized translation tolerance mechanism enabling continuous translation of TISU genes under energy stress and reveal that a key step in start codon selection of short 5' UTR is eIF4F release.


Asunto(s)
Codón Iniciador/genética , Factor 4G Eucariótico de Iniciación/genética , Factores Eucarióticos de Iniciación/genética , Genes Mitocondriales/genética , Proteínas de Neoplasias/genética , Proteínas del Tejido Nervioso/genética , Biosíntesis de Proteínas/genética , Estrés Fisiológico/genética , Proteínas Quinasas Activadas por AMP/genética , Línea Celular , Línea Celular Tumoral , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , ARN Mensajero/genética , ARN Mitocondrial , Ribosomas/genética
8.
PLoS Biol ; 11(5): e1001564, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23700384

RESUMEN

Translation control often operates via remodeling of messenger ribonucleoprotein particles. The poly(A) binding protein (PABP) simultaneously interacts with the 3' poly(A) tail of the mRNA and the eukaryotic translation initiation factor 4G (eIF4G) to stimulate translation. PABP also promotes miRNA-dependent deadenylation and translational repression of target mRNAs. We demonstrate that isoform 2 of the mouse heterogeneous nuclear protein Q (hnRNP-Q2/SYNCRIP) binds poly(A) by default when PABP binding is inhibited. In addition, hnRNP-Q2 competes with PABP for binding to poly(A) in vitro. Depleting hnRNP-Q2 from translation extracts stimulates cap-dependent and IRES-mediated translation that is dependent on the PABP/poly(A) complex. Adding recombinant hnRNP-Q2 to the extracts inhibited translation in a poly(A) tail-dependent manner. The displacement of PABP from the poly(A) tail by hnRNP-Q2 impaired the association of eIF4E with the 5' m(7)G cap structure of mRNA, resulting in the inhibition of 48S and 80S ribosome initiation complex formation. In mouse fibroblasts, silencing of hnRNP-Q2 stimulated translation. In addition, hnRNP-Q2 impeded let-7a miRNA-mediated deadenylation and repression of target mRNAs, which require PABP. Thus, by competing with PABP, hnRNP-Q2 plays important roles in the regulation of global translation and miRNA-mediated repression of specific mRNAs.


Asunto(s)
Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , MicroARNs/metabolismo , Animales , Sitios de Unión , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Fibroblastos/metabolismo , Células HeLa , Humanos , Ratones , MicroARNs/genética
9.
Mol Cell ; 46(6): 847-58, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22578813

RESUMEN

Translational control of gene expression plays a key role in many biological processes. Consequently, the activity of the translation apparatus is under tight homeostatic control. eIF4E, the mRNA 5' cap-binding protein, facilitates cap-dependent translation and is a major target for translational control. eIF4E activity is controlled by a family of repressor proteins, termed 4E-binding proteins (4E-BPs). Here, we describe the surprising finding that despite the importance of eIF4E for translation, a drastic knockdown of eIF4E caused only minor reduction in translation. This conundrum can be explained by the finding that 4E-BP1 is degraded in eIF4E-knockdown cells. Hypophosphorylated 4E-BP1, which binds to eIF4E, is degraded, whereas hyperphosphorylated 4E-BP1 is refractory to degradation. We identified the KLHL25-CUL3 complex as the E3 ubiquitin ligase, which targets hypophosphorylated 4E-BP1. Thus, the activity of eIF4E is under homeostatic control via the regulation of the levels of its repressor protein 4E-BP1 through ubiquitination.


Asunto(s)
Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Proteínas de Unión a Caperuzas de ARN/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas de Ciclo Celular , Células HEK293 , Células HeLa , Homeostasis , Humanos , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión a Caperuzas de ARN/metabolismo , Transfección , Ubiquitina/metabolismo
10.
Nat Immunol ; 13(6): 543-550, 2012 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-22544393

RESUMEN

Type I interferon is an integral component of the antiviral response, and its production is tightly controlled at the levels of transcription and translation. The eukaryotic translation-initiation factor eIF4E is a rate-limiting factor whose activity is regulated by phosphorylation of Ser209. Here we found that mice and fibroblasts in which eIF4E cannot be phosphorylated were less susceptible to virus infection. More production of type I interferon, resulting from less translation of Nfkbia mRNA (which encodes the inhibitor IκBα), largely explained this phenotype. The lower abundance of IκBα resulted in enhanced activity of the transcription factor NF-κB, which promoted the production of interferon-ß (IFN-ß). Thus, regulated phosphorylation of eIF4E has a key role in antiviral host defense by selectively controlling the translation of an mRNA that encodes a critical suppressor of the innate antiviral response.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Interferón Tipo I/biosíntesis , FN-kappa B/metabolismo , Estomatitis Vesicular/inmunología , Virus de la Estomatitis Vesicular Indiana/fisiología , Animales , Ensayo de Cambio de Movilidad Electroforética , Factor 4E Eucariótico de Iniciación/inmunología , Femenino , Proteínas I-kappa B/biosíntesis , Proteínas I-kappa B/genética , Proteínas I-kappa B/inmunología , Inmunidad Innata/inmunología , Immunoblotting , Interferón Tipo I/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Inhibidor NF-kappaB alfa , FN-kappa B/inmunología , Fosforilación , Biosíntesis de Proteínas , ARN Mensajero/química , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Organismos Libres de Patógenos Específicos , Estomatitis Vesicular/genética , Estomatitis Vesicular/metabolismo , Estomatitis Vesicular/virología , Virus de la Estomatitis Vesicular Indiana/inmunología , Replicación Viral
11.
Wiley Interdiscip Rev RNA ; 2(2): 277-98, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21957010

RESUMEN

The 5' mRNA cap structure is essential for efficient gene expression from yeast to human. It plays a critical role in all aspects of the life cycle of an mRNA molecule. Capping occurs co-transcriptionally on the nascent pre-mRNA as it emerges from the RNA exit channel of RNA polymerase II. The cap structure protects mRNAs from degradation by exonucleases and promotes transcription, polyadenylation, splicing, and nuclear export of mRNA and U-rich, capped snRNAs. In addition, the cap structure is required for the optimal translation of the vast majority of cellular mRNAs, and it also plays a prominent role in the expression of eukaryotic, viral, and parasite mRNAs. Cap-binding proteins specifically bind to the cap structure and mediate its functions in the cell. Two major cellular cap-binding proteins have been described to date: eukaryotic translation initiation factor 4E (eIF4E) in the cytoplasm and nuclear cap binding complex (nCBC), a nuclear complex consisting of a cap-binding subunit cap-binding protein 20 (CBP 20) and an auxiliary protein cap-binding protein 80 (CBP 80). nCBC plays an important role in various aspects of nuclear mRNA metabolism such as pre-mRNA splicing and nuclear export, whereas eIF4E acts primarily as a facilitator of mRNA translation. In this review, we highlight recent findings on the role of the cap structure and cap-binding proteins in the regulation of gene expression. We also describe emerging regulatory pathways that control mRNA capping and cap-binding proteins in the cell.


Asunto(s)
Regulación de la Expresión Génica , Proteínas de Unión a Caperuzas de ARN/fisiología , Caperuzas de ARN/fisiología , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/fisiología , Empalme Alternativo/genética , Empalme Alternativo/fisiología , Animales , Núcleo Celular/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Degradación de ARNm Mediada por Codón sin Sentido/genética , Degradación de ARNm Mediada por Codón sin Sentido/fisiología , Proteínas de Unión a Caperuzas de ARN/química , Proteínas de Unión a Caperuzas de ARN/genética , Proteínas de Unión a Caperuzas de ARN/metabolismo , Caperuzas de ARN/química , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , Procesamiento Postranscripcional del ARN
12.
Nucleic Acids Res ; 39(17): 7598-609, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21705780

RESUMEN

Translation Initiator of Short 5' UTR (TISU) is a unique regulatory element of both transcription and translation initiation. It is present in a sizable number of genes with basic cellular functions and a very short untranslated region (5' UTR). Here, we investigated translation initiation from short 5' UTR mRNAs with AUG in various contexts. Reducing 5' UTR length to the minimal functional size increases leaky scanning from weak and strong initiators but hardly affects translation initiation and ribosomal binding directed by TISU. Ribosome interaction with TISU mRNA is cap dependent and involves AUG downstream nucleotides that compensate for the absent 5' UTR contacts. Interestingly, eIF1 inhibits cap-proximal AUG selection within weak or strong contexts but not within TISU. Furthermore, TISU-directed translation is unaffected by inhibition of the RNA helicase eIF4A. Thus, TISU directs efficient cap-dependent translation initiation without scanning, a mechanism that would be advantageous when intracellular levels of eIF1 and eIF4A fluctuate.


Asunto(s)
Iniciación de la Cadena Peptídica Traduccional , Secuencias Reguladoras de Ácido Ribonucleico , Regiones no Traducidas 5' , Codón Iniciador , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 4A Eucariótico de Iniciación/antagonistas & inhibidores , Factores Eucarióticos de Iniciación/metabolismo , Células HEK293 , Células HeLa , Humanos , Caperuzas de ARN/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Ribosomas/metabolismo
13.
Methods Mol Biol ; 725: 207-17, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21528456

RESUMEN

Experiments with cell cultures have been useful in analyzing microRNA action. However, miRNA-mediated effects are often assayed many hours or days after miRNA target recognition. Consequently, this has made it difficult to analyze early events of miRNA-mediated repression. The development of cell-free systems that recapitulate miRNA action in vitro has been instrumental in dissecting the molecular mechanisms of miRNA action. Here we describe such a system, derived from mouse Krebs II ascites carcinoma cells, termed Krebs cell-free system. As an example, the protocol for assaying let-7 and GW182 (TNRC6) protein-mediated deadenylation of mRNA in vitro is described.


Asunto(s)
MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Secuencia de Bases , Sistema Libre de Células , Orden Génico , Marcaje Isotópico , Ratones , Modelos Biológicos , ARN Mensajero/genética , ARN Mensajero/metabolismo
14.
Nat Rev Mol Cell Biol ; 12(4): 235-45, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21427765

RESUMEN

The translation initiation step in eukaryotes is highly regulated and rate-limiting. During this process, the 40S ribosomal subunit is usually recruited to the 5' terminus of the mRNA. It then migrates towards the initiation codon, where it is joined by the 60S ribosomal subunit to form the 80S initiation complex. Secondary structures in the 5' untranslated region (UTR) can impede binding and movement of the 40S ribosome. The canonical eukaryotic translation initiation factor eIF4A (also known as DDX2), together with its accessory proteins eIF4B and eIF4H, is thought to act as a helicase that unwinds secondary structures in the mRNA 5' UTR. Growing evidence suggests that other helicases are also important for translation initiation and may promote the scanning processivity of the 40S subunit, synergize with eIF4A to 'melt' secondary structures or facilitate translation of a subset of mRNAs.


Asunto(s)
Codón Iniciador/genética , Biosíntesis de Proteínas/genética , ARN Helicasas/metabolismo , ARN Mensajero/genética , Animales , Factor 4A Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Humanos , Modelos Genéticos , ARN Mensajero/metabolismo
15.
J Clin Invest ; 120(9): 3389-400, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20739757

RESUMEN

Translational control plays a key role in late spermiogenesis. A number of mRNAs encoding proteins required for late spermiogenesis are expressed in early spermatids but are stored as translationally inactive messenger ribonucleoprotein particles (mRNPs). The translation of these mRNAs is associated with shortening of their poly(A) tail in late spermiogenesis. Poly(A)-binding protein (Pabp) plays an important role in mRNA stabilization and translation. Three Pabp-interacting proteins, Paip1, Paip2a, and Paip2b, have been described. Paip2a is expressed in late spermatids. To investigate the role of Paip2 in spermiogenesis, we generated mice with knockout of either Paip2a or Paip2b and double-KO (DKO) mice lacking both Paip2a and Paip2b. Paip2a-KO and Paip2a/Paip2b-DKO mice exhibited male infertility. Translation of several mRNAs encoding proteins essential to male germ cell development was inhibited in late spermiogenesis in Paip2a/Paip2b-DKO mice, resulting in defective elongated spermatids. Inhibition of translation in Paip2a/Paip2b-DKO mice was caused by aberrant increased expression of Pabp, which impaired the interaction between eukaryotic initiation factor 4E (eIF4E) and the cap structure at the 5' end of the mRNA. We therefore propose a model whereby efficient mRNA translation in late spermiogenesis occurs at an optimal concentration of Pabp, a condition not fulfilled in Paip2a/Paip2b-DKO mice.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Transactivadores/fisiología , Animales , Cruzamientos Genéticos , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Poli A/genética , Poli A/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Espermátides/metabolismo , Espermatogénesis/genética
16.
PLoS One ; 5(7): e11607, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20657652

RESUMEN

BACKGROUND: DCB-3503, a tylophorine analog, inhibits the growth of PANC-1 (human pancreatic ductal cancer cell line) and HepG2 (human hepatocellular cancer cell line) tumor xenografts in nude mice. The inhibition of growth leads to cancer cell differentiation instead of cell death. However, the mechanisms of action of tylophorine analogs is unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we show that DCB-3503 suppresses the expression of pro-oncogenic or pro-survival proteins with short half-lives, including cyclin D1, survivin, beta-catenin, p53, and p21, without decreasing their mRNA levels. Proteasome inhibitor reversed the inhibitory effect of DCB-3503 on expression of these proteins. DCB-3503 inhibited the incorporation of radiolabeled amino acid and thymidine, and to a much lesser degree of uridine, in a panel of cell lines. The mechanism of inhibition of protein synthesis is different from that of cycloheximide (CHX) as assayed in cell culture and HeLa in vitro translation system. Furthermore, in contrast to rapamycin, DCB-3503 does not affect protein synthesis through the mTOR pathway. DCB-3503 treatment shifts the sedimentation profiles of ribosomes and mRNAs towards the polysomal fractions while diminishing monosome abundance, indicative of the inhibition of the elongation step of protein synthesis. Preferential down regulation of several studied proteins under these conditions is likely due to the relative short half-lives of these proteins. CONCLUSION/SIGNIFICANCE: The inhibitory effect of DCB-3503 on translation is apparently distinct from any of the current anticancer compounds targeting protein synthesis. Translation inhibitors with novel mechanism could complement current chemotherapeutic agents for the treatment of human cancers and suppress the occurrence of drug resistance.


Asunto(s)
Alcaloides/química , Indolizinas/química , Indolizinas/farmacología , Fenantrenos/química , Fenantrenos/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Aminoácidos/metabolismo , Northern Blotting , Western Blotting , Línea Celular Tumoral , Humanos , Reacción en Cadena de la Polimerasa , Polirribosomas/efectos de los fármacos , Polirribosomas/metabolismo , Timidina/metabolismo
17.
Mol Cell Biol ; 30(6): 1478-85, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20086100

RESUMEN

Translation initiation plays an important role in cell growth, proliferation, and survival. The translation initiation factor eIF4B (eukaryotic initiation factor 4B) stimulates the RNA helicase activity of eIF4A in unwinding secondary structures in the 5' untranslated region (5'UTR) of the mRNA in vitro. Here, we studied the effects of eIF4B depletion in cells using RNA interference (RNAi). In agreement with the role of eIF4B in translation initiation, its depletion resulted in inhibition of this step. Selective reduction of translation was observed for mRNAs harboring strong to moderate secondary structures in their 5'UTRs. These mRNAs encode proteins, which function in cell proliferation (Cdc25C, c-myc, and ODC [ornithine decarboxylase]) and survival (Bcl-2 and XIAP [X-linked inhibitor of apoptosis]). Furthermore, eIF4B silencing led to decreased proliferation rates, promoted caspase-dependent apoptosis, and further sensitized cells to camptothecin-induced cell death. These results demonstrate that eIF4B is required for cell proliferation and survival by regulating the translation of proliferative and prosurvival mRNAs.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , Regiones no Traducidas 5' , Apoptosis/efectos de los fármacos , Camptotecina/farmacología , Caspasas/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Células HeLa , Humanos , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo
18.
Proc Natl Acad Sci U S A ; 106(52): 22217-22, 2009 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-20018725

RESUMEN

Translational control plays an important role in cell growth and tumorigenesis. Cap-dependent translation initiation of mammalian mRNAs with structured 5'UTRs requires the DExH-box protein, DHX29, in vitro. Here we show that DHX29 is important for translation in vivo. Down-regulation of DHX29 leads to impaired translation, resulting in disassembly of polysomes and accumulation of mRNA-free 80S monomers. DHX29 depletion also impedes cancer cell growth in culture and in xenografts. Thus, DHX29 is a bona fide translation initiation factor that potentially can be exploited as a target to inhibit cancer cell growth.


Asunto(s)
Proliferación Celular , Neoplasias/etiología , Iniciación de la Cadena Peptídica Traduccional/fisiología , ARN Helicasas/metabolismo , Regiones no Traducidas 5' , Animales , Regulación hacia Abajo , Células HeLa , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/genética , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Trasplante Heterólogo
19.
Mol Cell ; 35(6): 868-80, 2009 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-19716330

RESUMEN

MicroRNAs (miRNAs) inhibit mRNA expression in general by base pairing to the 3'UTR of target mRNAs and consequently inhibiting translation and/or initiating poly(A) tail deadenylation and mRNA destabilization. Here we examine the mechanism and kinetics of miRNA-mediated deadenylation in mouse Krebs-2 ascites extract. We demonstrate that miRNA-mediated mRNA deadenylation occurs subsequent to initial translational inhibition, indicating a two-step mechanism of miRNA action, which serves to consolidate repression. We show that a let-7 miRNA-loaded RNA-induced silencing complex (miRISC) interacts with the poly(A)-binding protein (PABP) and the CAF1 and CCR4 deadenylases. In addition, we demonstrate that miRNA-mediated deadenylation is dependent upon CAF1 activity and PABP, which serves as a bona fide miRNA coactivator. Importantly, we present evidence that GW182, a core component of the miRISC, directly interacts with PABP via its C-terminal region and that this interaction is required for miRNA-mediated deadenylation.


Asunto(s)
Silenciador del Gen , MicroARNs/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Proteínas/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Animales , Proteínas Argonautas , Ascitis/genética , Ascitis/metabolismo , Autoantígenos/metabolismo , Sitios de Unión , Carcinoma Krebs 2/genética , Carcinoma Krebs 2/metabolismo , Sistema Libre de Células , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Exorribonucleasas , Células HeLa , Humanos , Cinética , Ratones , Proteínas de Unión a Poli(A)/genética , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Proteínas/genética , Estabilidad del ARN , Complejo Silenciador Inducido por ARN/genética , Receptores CCR4/metabolismo , Proteínas Represoras , Ribonucleasas , Transfección
20.
J Med Chem ; 52(16): 5176-87, 2009 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-19655762

RESUMEN

Flavaglines constitute a family of natural anticancer compounds. We present here 3 (FL3), the first synthetic flavagline that inhibits cell proliferation and viability (IC(50) approximately 1 nM) at lower doses than did the parent compound, racemic rocaglaol. Compound 3 enhanced doxorubicin cytotoxicity in HepG2 cells and retained its potency against adriamycin-resistant cell lines without inducing cardiomyocyte toxicity. Compound 3 induced apoptosis of HL60 and Hela cells by triggering the translocation of Apoptosis Inducing Factor (AIF) and caspase-12 to the nucleus. A fluorescent conjugate of 3 accumulated in endoplasmic reticulum (ER), suggesting that flavaglines bind to their target in the ER, where it triggers a cascade of events that leads to the translocation of AIF and caspase-12 to the nucleus and probably inhibition of eIF4A. Our studies highlight structural features critical to their antineoplastic potential and suggest that these compounds would retain their activity in cells refractory to caspase activation.


Asunto(s)
Antineoplásicos/síntesis química , Factor Inductor de la Apoptosis/metabolismo , Benzofuranos/síntesis química , Caspasa 12/metabolismo , Transporte Activo de Núcleo Celular , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis , Benzofuranos/química , Benzofuranos/farmacología , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Retículo Endoplásmico/metabolismo , Fase G2/efectos de los fármacos , Humanos , Estereoisomerismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...