Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Fluoresc ; 14(1): 71-4, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15622863

RESUMEN

The research in the field of the photodynamic therapy of cancer (PDT) is focused on a development of photosensitizers exhibiting high quantum yield of singlet oxygen production. Direct time-resolved spectroscopic observation of singlet oxygen phosphorescence can provide time constants of its population and depopulation as well as photosensitizer phosphorescence lifetime and relative quantum yields. In our contribution, a study of time and spectral resolved phosphorescence of singlet oxygen photosensitized by meso-tetraphenylporphine in acetone together with the photosensitizer phosphorescence is presented. Time constants of singlet oxygen population and depopulation were determined at wide range of photosensitizer concentrations. The time constant of singlet oxygen generation (0.28 +/- 0.01) micros is slightly shorter then the lifetime of photosensitizer's triplet state (0.32 +/- 0.01) micros. It is caused by lower ability of TPP aggregates to transfer excitation energy to oxygen. The lifetime of singlet oxygen (approximately 50 micros) decreases with increasing photosensitizer concentration. Therefore, the photosensitizer acts also as a quencher of oxygen singlet state, similarly to the effects observed in [A. A. Krasnovsky, P. Cheng, R. E. Blankenship, T. A. Moore, and D. Gust (1993). Photochem. Photobiol. 57, 324-330; H. Küpper, R. Dedic, A. Svoboda, J. Hála, and P. M. H. Kroneck (2002). Biochim. Biophys. Acta Gen. Subj. 1572, 107-113]. Moreover, the increasing concentration of the photosensitizer causes a slight hypsochromic shift of the singlet oxygen luminescence maximum.

2.
Biochim Biophys Acta ; 1572(1): 107-13, 2002 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12204339

RESUMEN

Time-resolved measurements of the singlet oxygen infrared (1269 nm) luminescence were used to follow the kinetics and efficiency of excitation energy transfer (EET) between chlorophyll (Chl) derivatives and oxygen in acetone. The studied pigments were Mg-Chl a and b and their heavy metal (Cu(2+) and Zn(2+))-substituted analogues, as well as pheophytin (Pheo) a and b. The efficiency of EET from chlorophyll to oxygen was highly dependent on the central ion in the pigment. Cu-Chl a and Cu-Chl b had the lowest efficiencies of singlet oxygen production, while Pheo a had a higher one, and Zn-Chl a had a similar one compared to Mg-Chl a. Also the side chain (position C-7, i.e. Chl a vs. Chl b) influenced the efficiency of singlet oxygen formation. In the case of square-planar complexes like Cu-Chl and Pheo, EET was more efficient in the Chl a derivatives than in those of Chl b; the opposite effect was observed in the case of the five- or six-coordinated Mg-Chl and Zn-Chl. As for the lifetime of the Chl triplet state, the most striking difference to Mg-Chl again was found in the case of Cu-Chls, which had much shorter lifetimes. Furthermore, the central ion in Chl affected the physical quenching of singlet oxygen: its efficiency was decreasing from Mg-Chl through Zn-Chl over Cu-Chl to Pheo. The results are discussed in the context of the oxidative stress accompanying heavy metal-induced stress in plants.


Asunto(s)
Clorofila/química , Metales Pesados/química , Feofitinas/química , Oxígeno Singlete/química , Transferencia de Energía , Oxígeno Singlete/análisis , Espectrofotometría , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA