Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Hear Res ; 453: 109110, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39278142

RESUMEN

It has long been known that environmental conditions, particularly during development, affect morphological and functional properties of the brain including sensory systems; manipulating the environment thus represents a viable way to explore experience-dependent plasticity of the brain as well as of sensory systems. In this review, we summarize our experience with the effects of acoustically enriched environment (AEE) consisting of spectrally and temporally modulated complex sounds applied during first weeks of the postnatal development in rats and compare it with the related knowledge from the literature. Compared to controls, rats exposed to AEE showed in neurons of several parts of the auditory system differences in the dendritic length and in number of spines and spine density. The AEE exposure permanently influenced neuronal representation of the sound frequency and intensity resulting in lower excitatory thresholds, increased frequency selectivity and steeper rate-intensity functions. These changes were present both in the neurons of the inferior colliculus and the auditory cortex (AC). In addition, the AEE changed the responsiveness of AC neurons to frequency modulated, and also to a lesser extent, amplitude-modulated stimuli. Rearing rat pups in AEE leads to an increased reliability of acoustical responses of AC neurons, affecting both the rate and the temporal codes. At the level of individual spikes, the discharge patterns of individual neurons show a higher degree of similarity across stimulus repetitions. Behaviorally, rearing pups in AEE resulted in an improvement in the frequency resolution and gap detection ability under conditions with a worsened stimulus clarity. Altogether, the results of experiments show that the exposure to AEE during the critical developmental period influences the frequency and temporal processing in the auditory system, and these changes persist until adulthood. The results may serve for interpretation of the effects of the application of enriched acoustical environment in human neonatal medicine, especially in the case of care for preterm born children.

2.
Hear Res ; 401: 108139, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33348192

RESUMEN

AUT00063 and AUT00202 are novel pharmaceutical modulators of the Kv3 subfamily of voltage-gated K+ channels. Kv3.1 channels, which control fast firing of many central auditory neurons, have been shown to decline with age and this may contribute to age-related deficits in central auditory processing. In the present study, the effects of the two novel compounds that specifically modulate Kv3 channels on auditory temporal processing were examined in aged (19-25-month-old) and young-adult (3-5 month-old) Fischer 344 rats (F344) using a behavioral gap-prepulse inhibition (gap-PPI) paradigm. The acoustic startle response (ASR) and its inhibition induced by a gap in noise were measured before and after drug administration. Hearing thresholds in tested rats were evaluated by the auditory brainstem response (ABR). Aged F344 rats had significantly higher ABR thresholds, lower amplitudes of ASR, and weaker gap-PPI compared with young-adult rats. No influence of AUT00063 and AUT00202 administration was observed on ABR hearing thresholds in rats of both age groups. AUT00063 and AUT00202 had suppressive effect on ASR of F344 rats that was more pronounced with AUT00063. The degree of suppression depended on the dose and age of the rats. Both compounds significantly improved the gap-PPI performance in gap detection tests in aged rats. These results indicate that AUT00063 and AUT00202 may influence intrinsic firing properties of neurons in the central auditory system of aged animals and have the potential to treat aged-related hearing disorders.


Asunto(s)
Percepción Auditiva , Potenciales Evocados Auditivos del Tronco Encefálico , Estimulación Acústica , Animales , Umbral Auditivo , Inhibición Prepulso , Ratas , Ratas Endogámicas F344 , Reflejo de Sobresalto , Canales de Potasio Shaw
3.
Front Aging Neurosci ; 12: 553461, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343328

RESUMEN

Age related hearing loss (presbycusis) is a natural process represented by elevated auditory thresholds and decreased speech intelligibility, especially in noisy conditions. Tinnitus is a phantom sound that also potentially leads to cortical changes, with its highest occurrence coinciding with the clinical onset of presbycusis. The aim of our project was to identify age, hearing loss and tinnitus related structural changes, within the auditory system and associated structures. Groups of subjects with presbycusis and tinnitus (22 subjects), with only presbycusis (24 subjects), young tinnitus patients with normal hearing (10 subjects) and young controls (17 subjects), underwent an audiological examination to characterize hearing loss and tinnitus. In addition, MRI (3T MR system, analysis in Freesurfer software) scans were used to identify changes in the cortical and subcortical structures. The following areas of the brain were analyzed: Heschl gyrus (HG), planum temporale (PT), primary visual cortex (V1), gyrus parahippocampus (PH), anterior insula (Ins), amygdala (Amg), and hippocampus (HP). A statistical analysis was performed in R framework using linear mixed-effects models with explanatory variables: age, tinnitus, laterality and hearing. In all of the cortical structures, the gray matter thickness decreased significantly with aging without having an effect on laterality (differences between the left and right hemispheres). The decrease in the gray matter thickness was faster in the HG, PT and Ins in comparison with the PH and V1. Aging did not influence the surface of the cortical areas, however there were differences between the surface size of the reported regions in the left and right hemispheres. Hearing loss caused only a borderline decrease of the cortical surface in the HG. Tinnitus was accompanied by a borderline decrease of the Ins surface and led to an increase in the volume of Amy and HP. In summary, aging is accompanied by a decrease in the cortical gray matter thickness; hearing loss only has a limited effect on the structure of the investigated cortical areas and tinnitus causes structural changes which are predominantly within the limbic system and insula, with the structure of the auditory system only being minimally affected.

4.
Brain Struct Funct ; 225(7): 1979-1995, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32588120

RESUMEN

The structure of neurons in the central auditory system is vulnerable to various kinds of acoustic exposures during the critical postnatal developmental period. Here we explored long-term effects of exposure to an acoustically enriched environment (AEE) during the third and fourth weeks of the postnatal period in rat pups. AEE consisted of a spectrally and temporally modulated sound of moderate intensity, reinforced by a behavioral paradigm. At the age of 3-6 months, a Golgi-Cox staining was used to evaluate the morphology of neurons in the inferior colliculus (IC), the medial geniculate body (MGB), and the auditory cortex (AC). Compared to controls, rats exposed to AEE showed an increased mean dendritic length and volume and the soma surface in the external cortex and the central nucleus of the IC. The spine density increased in both the ventral and dorsal divisions of the MGB. In the AC, the total length and volume of the basal dendritic segments of pyramidal neurons and the number and density of spines on these dendrites increased significantly. No differences were found on apical dendrites. We also found an elevated number of spines and spine density in non-pyramidal neurons. These results show that exposure to AEE during the critical developmental period can induce permanent changes in the structure of neurons in the central auditory system. These changes represent morphological correlates of the functional plasticity, such as an improvement in frequency tuning and synchronization with temporal parameters of acoustical stimuli.


Asunto(s)
Corteza Auditiva/fisiología , Vías Auditivas/fisiología , Cuerpos Geniculados/fisiología , Colículos Inferiores/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Estimulación Acústica , Animales , Animales Recién Nacidos , Corteza Auditiva/citología , Vías Auditivas/citología , Forma de la Célula/fisiología , Dendritas/fisiología , Espinas Dendríticas/fisiología , Cuerpos Geniculados/citología , Colículos Inferiores/citología , Neuronas/citología , Ratas , Ratas Long-Evans
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA